R/gs_power_combo.R

Defines functions gs_power_combo

Documented in gs_power_combo

#  Copyright (c) 2022 Merck Sharp & Dohme Corp. a subsidiary of Merck & Co., Inc., Rahway, NJ, USA.
#
#  This file is part of the gsDesign2 program.
#
#  gsDesign2 is free software: you can redistribute it and/or modify
#  it under the terms of the GNU General Public License as published by
#  the Free Software Foundation, either version 3 of the License, or
#  (at your option) any later version.
#
#  This program is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.
#
#  You should have received a copy of the GNU General Public License
#  along with this program.  If not, see <http://www.gnu.org/licenses/>.

#' Group sequential design power using MaxCombo test under non-proportional hazards
#' @importFrom mvtnorm GenzBretz
#' @importFrom tibble tibble
#' 
#' @inheritParams gs_design_combo
#' @inheritParams pmvnorm_combo
#'
#' @examples
#' library(dplyr)
#' library(mvtnorm)
#' library(gsDesign)
#' library(gsDesign2)
#' library(tibble)
#' 
#' enrollRates <- tibble(
#'   Stratum = "All", 
#'   duration = 12, 
#'   rate = 500/12)
#'
#' failRates <- tibble(
#'   Stratum = "All",
#'   duration = c(4, 100),
#'   failRate = log(2) / 15,  # median survival 15 month
#'   hr = c(1, .6),
#'   dropoutRate = 0.001)
#'
#' fh_test <- rbind(
#'   data.frame(rho = 0, gamma = 0, tau = -1, test = 1, Analysis = 1:3, analysisTimes = c(12, 24, 36)),
#'   data.frame(rho = c(0, 0.5), gamma = 0.5, tau = -1, test = 2:3, Analysis = 3, analysisTimes = 36)
#' )
#' 
#' # -------------------------#
#' #       example 1          #
#' # ------------------------ #
#' # Minimal Information Fraction derived bound
#' gs_power_combo(
#'   enrollRates, 
#'   failRates, 
#'   fh_test,
#'   upper = gs_spending_combo,
#'   upar  = list(sf = gsDesign::sfLDOF, total_spend = 0.025),
#'   lower = gs_spending_combo,
#'   lpar  = list(sf = gsDesign::sfLDOF, total_spend = 0.2))
#'
#' 
#' @section Specification:
#' \if{latex}{
#'  \itemize{
#'    \item Validate if lower and upper bounds have been specified.
#'    \item Extract info, info_fh, theta_fh and corr_fh from utility.
#'    \item Extract sample size via the maximum sample size of info.
#'    \item Calculate information fraction either for fixed or group sequential design.
#'    \item Compute spending function using \code{gs_bound()}.
#'    \item Compute probability of crossing bounds under the null and alternative
#'     hypotheses using \code{gs_prob_combo()}.
#'    \item Export required information for boundary and crossing probability
#'   }
#' }
#' \if{html}{The contents of this section are shown in PDF user manual only.}
#'
#' @export
gs_power_combo <- function(enrollRates = tibble(Stratum = "All", 
                                                duration = 12, 
                                                rate = 500 / 12),
                           failRates = tibble(Stratum = "All", 
                                              duration = c(4, 100), 
                                              failRate = log(2) / 15,  
                                              hr = c(1, .6), 
                                              dropoutRate = 0.001),
                           fh_test = rbind(data.frame(rho = 0, gamma = 0, tau = -1, test = 1, 
                                                      Analysis = 1:3, analysisTimes = c(12, 24, 36)),
                                           data.frame(rho = c(0, 0.5), gamma = 0.5, tau = -1, test = 2:3, 
                                                      Analysis = 3, analysisTimes = 36)),
                           ratio = 1,
                           binding = FALSE,
                           upper = gs_b,
                           upar = c(3, 2, 1),
                           lower = gs_b,
                           lpar = c(-1, 0, 1),
                           algorithm = GenzBretz(maxpts = 1e5, abseps = 1e-5),
                           ...){
  
  # Currently only support user defined lower and upper bound
  stopifnot( identical(upper, gs_b) | identical(upper, gs_spending_combo) )
  stopifnot( identical(lower, gs_b) | identical(lower, gs_spending_combo) )
  
  # --------------------------------------------- #
  #     get the number of analysis/test           #
  # --------------------------------------------- #
  n_analysis <- length(unique(fh_test$Analysis))
  n_test <- max(fh_test$test)
  
  # Obtain utilities
  utility <- gs_utility_combo(enrollRates = enrollRates,
                              failRates = failRates,
                              fh_test = fh_test,
                              ratio = ratio,
                              algorithm = algorithm, ...)
  
  info     <- utility$info_all
  info_fh  <- utility$info
  theta_fh <- utility$theta
  corr_fh  <- utility$corr
  
  # Sample size
  n <- max(info$N)
  
  # Information Fraction
  if(length(unique(fh_test$Analysis)) == 1){
    # Fixed design
    min_info_frac <- 1
  }else{
    info_frac <- tapply(info$info0, info$test, function(x) x / max(x))
    min_info_frac <- apply(do.call(rbind, info_frac), 2, min)
  }
  
  # Obtain spending function
  bound <- gs_bound(alpha = upper(upar, min_info_frac),
                    beta = lower(lpar, min_info_frac),
                    analysis = info_fh$Analysis,
                    theta = theta_fh * sqrt(n),
                    corr = corr_fh,
                    binding_lower_bound = binding,
                    algorithm = algorithm,
                    alpha_bound = identical(upper, gs_b),
                    beta_bound = identical(lower, gs_b),
                    ...)
  
  
  # Probability Cross Boundary under Alternative
  prob <- gs_prob_combo(upper_bound = bound$upper,
                        lower_bound = bound$lower,
                        analysis = info_fh$Analysis,
                        theta = theta_fh * sqrt(n),
                        corr = corr_fh,
                        algorithm = algorithm, ...)
  
  # Probability Cross Boundary under Null
  prob_null <- gs_prob_combo(upper_bound = bound$upper,
                             lower_bound = if(binding){bound$lower}else{rep(-Inf, nrow(bound))},
                             analysis = info_fh$Analysis,
                             theta = rep(0, nrow(info_fh)),
                             corr = corr_fh,
                             algorithm = algorithm, ...)
  
  # if(binding == FALSE){
  #   prob_null$Probability[prob_null$Bound == "Lower"] <- NA
  # }
  
  prob$Probability_Null <- prob_null$Probability
  
  # Prepare output
  db <- merge(
    data.frame(Analysis = 1:(nrow(prob)/2), prob, Z = unlist(bound)),
    info_fh  %>% 
      tibble::as_tibble() %>% 
      select(Analysis, Time, N, Events) %>% 
      unique()) %>%
    arrange(Analysis, desc(Bound))
  
  # --------------------------------------------- #
  #     get bounds to output                      #
  # --------------------------------------------- #
  bounds <- db %>% 
    dplyr::mutate(`Nominal p` = pnorm(Z * (-1))) %>% 
    dplyr::select(Analysis, Bound, Probability, Probability_Null, Z, `Nominal p`)  %>%  
    dplyr::rename(Probability0 = Probability_Null) %>% 
    arrange(Analysis,desc(Bound)) 

  # --------------------------------------------- #
  #     get analysis summary to output            #
  # --------------------------------------------- #
  # check if rho, gamma = 0 is included in fh_test
  tmp <- fh_test %>% 
    filter(rho == 0 & gamma == 0 & tau == -1) %>% 
    select(test) %>% 
    unlist() %>% 
    as.numeric() %>% 
    unique()
  if(length(tmp) != 0){
    AHR_dis <- utility$info_all %>% 
      filter(test == tmp) %>% 
      select(AHR) %>% 
      unlist() %>% 
      as.numeric()
  }else{
    AHR_dis <- gs_info_wlr(
      enrollRates, 
      failRates, 
      ratio, 
      events = unique(utility$info_all$Events), 
      analysisTimes = unique(utility$info_all$Time), 
      weight = eval(parse(text = get_combo_weight(rho = 0, gamma = 0, tau = -1))))$AHR
  }
  
  analysis <- utility$info_all %>% 
    select(Analysis, test, Time, N, Events) %>% 
    mutate(theta = utility$info_all$theta,
           EF = Events/tapply(Events, test, function(x) max(x)) %>% unlist() %>% as.numeric()) %>% 
    select(Analysis, Time, N, Events, EF) %>% 
    unique() %>% 
    mutate(AHR = AHR_dis) %>% 
    mutate(N = N *n / max(info_fh$N),
           Events = Events * n / max(info_fh$N)) %>%  
    arrange(Analysis)
  
  # --------------------------------------------- #
  #     output                                    #
  # --------------------------------------------- #
  message("The AHR reported in the `analysis` table is under the log-rank test.")
  output <- list(
    enrollRates = enrollRates %>% mutate(rate = rate * max(analysis$N) / sum(rate * duration) ),
    failRates = failRates,
    bounds = bounds, 
    analysis = analysis)
  class(output) <- c("combo", "gs_design", class(output))
  return(output)
}
keaven/gsDesign2 documentation built on Oct. 13, 2022, 8:42 p.m.