# Copyright (c) 2022 Merck Sharp & Dohme Corp. a subsidiary of Merck & Co., Inc., Rahway, NJ, USA.
#
# This file is part of the gsDesign2 program.
#
# gsDesign2 is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#' Group sequential design power using MaxCombo test under non-proportional hazards
#' @importFrom mvtnorm GenzBretz
#' @importFrom tibble tibble
#'
#' @inheritParams gs_design_combo
#' @inheritParams pmvnorm_combo
#'
#' @examples
#' library(dplyr)
#' library(mvtnorm)
#' library(gsDesign)
#' library(gsDesign2)
#' library(tibble)
#'
#' enrollRates <- tibble(
#' Stratum = "All",
#' duration = 12,
#' rate = 500/12)
#'
#' failRates <- tibble(
#' Stratum = "All",
#' duration = c(4, 100),
#' failRate = log(2) / 15, # median survival 15 month
#' hr = c(1, .6),
#' dropoutRate = 0.001)
#'
#' fh_test <- rbind(
#' data.frame(rho = 0, gamma = 0, tau = -1, test = 1, Analysis = 1:3, analysisTimes = c(12, 24, 36)),
#' data.frame(rho = c(0, 0.5), gamma = 0.5, tau = -1, test = 2:3, Analysis = 3, analysisTimes = 36)
#' )
#'
#' # -------------------------#
#' # example 1 #
#' # ------------------------ #
#' # Minimal Information Fraction derived bound
#' gs_power_combo(
#' enrollRates,
#' failRates,
#' fh_test,
#' upper = gs_spending_combo,
#' upar = list(sf = gsDesign::sfLDOF, total_spend = 0.025),
#' lower = gs_spending_combo,
#' lpar = list(sf = gsDesign::sfLDOF, total_spend = 0.2))
#'
#'
#' @section Specification:
#' \if{latex}{
#' \itemize{
#' \item Validate if lower and upper bounds have been specified.
#' \item Extract info, info_fh, theta_fh and corr_fh from utility.
#' \item Extract sample size via the maximum sample size of info.
#' \item Calculate information fraction either for fixed or group sequential design.
#' \item Compute spending function using \code{gs_bound()}.
#' \item Compute probability of crossing bounds under the null and alternative
#' hypotheses using \code{gs_prob_combo()}.
#' \item Export required information for boundary and crossing probability
#' }
#' }
#' \if{html}{The contents of this section are shown in PDF user manual only.}
#'
#' @export
gs_power_combo <- function(enrollRates = tibble(Stratum = "All",
duration = 12,
rate = 500 / 12),
failRates = tibble(Stratum = "All",
duration = c(4, 100),
failRate = log(2) / 15,
hr = c(1, .6),
dropoutRate = 0.001),
fh_test = rbind(data.frame(rho = 0, gamma = 0, tau = -1, test = 1,
Analysis = 1:3, analysisTimes = c(12, 24, 36)),
data.frame(rho = c(0, 0.5), gamma = 0.5, tau = -1, test = 2:3,
Analysis = 3, analysisTimes = 36)),
ratio = 1,
binding = FALSE,
upper = gs_b,
upar = c(3, 2, 1),
lower = gs_b,
lpar = c(-1, 0, 1),
algorithm = GenzBretz(maxpts = 1e5, abseps = 1e-5),
...){
# Currently only support user defined lower and upper bound
stopifnot( identical(upper, gs_b) | identical(upper, gs_spending_combo) )
stopifnot( identical(lower, gs_b) | identical(lower, gs_spending_combo) )
# --------------------------------------------- #
# get the number of analysis/test #
# --------------------------------------------- #
n_analysis <- length(unique(fh_test$Analysis))
n_test <- max(fh_test$test)
# Obtain utilities
utility <- gs_utility_combo(enrollRates = enrollRates,
failRates = failRates,
fh_test = fh_test,
ratio = ratio,
algorithm = algorithm, ...)
info <- utility$info_all
info_fh <- utility$info
theta_fh <- utility$theta
corr_fh <- utility$corr
# Sample size
n <- max(info$N)
# Information Fraction
if(length(unique(fh_test$Analysis)) == 1){
# Fixed design
min_info_frac <- 1
}else{
info_frac <- tapply(info$info0, info$test, function(x) x / max(x))
min_info_frac <- apply(do.call(rbind, info_frac), 2, min)
}
# Obtain spending function
bound <- gs_bound(alpha = upper(upar, min_info_frac),
beta = lower(lpar, min_info_frac),
analysis = info_fh$Analysis,
theta = theta_fh * sqrt(n),
corr = corr_fh,
binding_lower_bound = binding,
algorithm = algorithm,
alpha_bound = identical(upper, gs_b),
beta_bound = identical(lower, gs_b),
...)
# Probability Cross Boundary under Alternative
prob <- gs_prob_combo(upper_bound = bound$upper,
lower_bound = bound$lower,
analysis = info_fh$Analysis,
theta = theta_fh * sqrt(n),
corr = corr_fh,
algorithm = algorithm, ...)
# Probability Cross Boundary under Null
prob_null <- gs_prob_combo(upper_bound = bound$upper,
lower_bound = if(binding){bound$lower}else{rep(-Inf, nrow(bound))},
analysis = info_fh$Analysis,
theta = rep(0, nrow(info_fh)),
corr = corr_fh,
algorithm = algorithm, ...)
# if(binding == FALSE){
# prob_null$Probability[prob_null$Bound == "Lower"] <- NA
# }
prob$Probability_Null <- prob_null$Probability
# Prepare output
db <- merge(
data.frame(Analysis = 1:(nrow(prob)/2), prob, Z = unlist(bound)),
info_fh %>%
tibble::as_tibble() %>%
select(Analysis, Time, N, Events) %>%
unique()) %>%
arrange(Analysis, desc(Bound))
# --------------------------------------------- #
# get bounds to output #
# --------------------------------------------- #
bounds <- db %>%
dplyr::mutate(`Nominal p` = pnorm(Z * (-1))) %>%
dplyr::select(Analysis, Bound, Probability, Probability_Null, Z, `Nominal p`) %>%
dplyr::rename(Probability0 = Probability_Null) %>%
arrange(Analysis,desc(Bound))
# --------------------------------------------- #
# get analysis summary to output #
# --------------------------------------------- #
# check if rho, gamma = 0 is included in fh_test
tmp <- fh_test %>%
filter(rho == 0 & gamma == 0 & tau == -1) %>%
select(test) %>%
unlist() %>%
as.numeric() %>%
unique()
if(length(tmp) != 0){
AHR_dis <- utility$info_all %>%
filter(test == tmp) %>%
select(AHR) %>%
unlist() %>%
as.numeric()
}else{
AHR_dis <- gs_info_wlr(
enrollRates,
failRates,
ratio,
events = unique(utility$info_all$Events),
analysisTimes = unique(utility$info_all$Time),
weight = eval(parse(text = get_combo_weight(rho = 0, gamma = 0, tau = -1))))$AHR
}
analysis <- utility$info_all %>%
select(Analysis, test, Time, N, Events) %>%
mutate(theta = utility$info_all$theta,
EF = Events/tapply(Events, test, function(x) max(x)) %>% unlist() %>% as.numeric()) %>%
select(Analysis, Time, N, Events, EF) %>%
unique() %>%
mutate(AHR = AHR_dis) %>%
mutate(N = N *n / max(info_fh$N),
Events = Events * n / max(info_fh$N)) %>%
arrange(Analysis)
# --------------------------------------------- #
# output #
# --------------------------------------------- #
message("The AHR reported in the `analysis` table is under the log-rank test.")
output <- list(
enrollRates = enrollRates %>% mutate(rate = rate * max(analysis$N) / sum(rate * duration) ),
failRates = failRates,
bounds = bounds,
analysis = analysis)
class(output) <- c("combo", "gs_design", class(output))
return(output)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.