tests/testthat/test-independent_test_tenFHCorr.R

testthat::test_that("tenFHCorr calculated correct correlation value",{
  set.seed(123)
  y=sim_pw_surv(n=300) %>% cut_data_by_event(30)
  adjust.methods="asymp"
  wt=list(a1=c(0,0),a2=c(0,1),a3=c(1,0),a4=c(1,1))
  ties.method = "efron"
  one.sided   = TRUE
  HT.est      = FALSE
  max         = TRUE
  alpha       = 0.025
  data.anal <- data.frame(cbind(y$tte,y$event,y$Treatment))
  fit<- survMisc::ten(Surv(y$tte, y$event) ~ y$Treatment, data = y)

  #Testing
  survMisc::comp(fit, p= sapply(wt, function(x){x[1]}), q= sapply(wt, function(x){x[2]}))
  tst.rslt <- attr(fit, 'lrt')
  #Combination test ("asymp")
  #Calculating the covariace matrix
  tst.rslt1 <- rbind(tst.rslt[1,],subset(tst.rslt, grepl("FH", tst.rslt$W)))
  Z.tst.rslt1 <- tst.rslt1$Z
  q.tst.rslt1 <- tst.rslt1$Q
  var.tst.rslt1 <- tst.rslt1$Var
  wt1 <- c(list(a0=c(0,0)), wt)
  combo.wt <- combn(wt1,2)
  combo.wt.list <- list()
  for(i in 1:ncol(combo.wt)){combo.wt.list[[i]] <- combo.wt[,i]}
  combo.wt.list.up <- lapply(combo.wt.list,function(a){mapply('+',a)})
  wt2 <- lapply(combo.wt.list.up, function(a){apply(a,1,'sum')/2})
  d1 <- data.frame(do.call(rbind,wt2))
  wt3 <- unique(wt2)
  d2 <- data.frame(do.call(rbind,wt3))
  fit2<- survMisc::ten(Surv(y$tte, y$event) ~ y$Treatment, data = y)

  #Testing (for calculating the covariances)
  survMisc::comp(fit2, p= sapply(wt3, function(x){x[1]}), q= sapply(wt3, function(x){x[2]}))
  tst.rsltt <- attr(fit2, 'lrt')
  tst.rslt2 <- subset(tst.rsltt, grepl("FH", tst.rsltt$W))
  cov.tst.rslt11 <- tst.rslt2$Var
  d2$V <- cov.tst.rslt11
  d1d2 <- full_join(d1,d2, by = c("X1","X2"))
  cov.tst.rslt1 <- d1d2$V
  cov.tst.1 <- matrix(NA, nrow=length(wt1), ncol=length(wt1))
  cov.tst.1[lower.tri(cov.tst.1, diag=FALSE)] <- cov.tst.rslt1
  cov.tst <- t(cov.tst.1)
  cov.tst[lower.tri(cov.tst, diag=FALSE)] <- cov.tst.rslt1
  diag(cov.tst) <- var.tst.rslt1
  cov.tst.1 <- matrix(Matrix::nearPD(cov.tst)$mat, length(Z.tst.rslt1),length(Z.tst.rslt1))
  z.max <- max(abs(tst.rslt1$Z))
  cor.tst <- cov2cor(cov.tst.1)
  pval2 <- 1 - max(min(pmvnorm(lower = rep(-z.max, length(Z.tst.rslt1)),
                               upper= rep(z.max, length(Z.tst.rslt1)),
                               corr= cor.tst, algorithm= Miwa())[1],0.9999), 0.0001)
  max.tst <- which(abs(Z.tst.rslt1) == max(abs(Z.tst.rslt1)), arr.ind = TRUE)
  if(Z.tst.rslt1[max.tst] >= 0){pval <- 1 - pval2/2}
  if(Z.tst.rslt1[max.tst] < 0){pval <- pval2/2}
  corr1=cor.tst[2:5,2:5]
  a2 <- y %>% counting_process(arm="Experimental")
  corr2=tenFHcorr(a2,rg=tibble(rho=c(0,0,1,1),gamma=c(0,1,0,1)))
  corr2= rbind(corr2$V1,corr2$V2,corr2$V3,corr2$V4)
  expect_equal(corr1,corr2,tolerance = 0.00001)
})
keaven/simtrial documentation built on April 17, 2023, 4:03 a.m.