# Script to scrape the field codes from the PDFs provided by USFWS (in the
# inst/extdata directory), harmonize and save as package data
library(tabulizer)
library(dplyr)
library(stringi)
h <- here::here
cf2009 <- h("inst", "extdata", "Import_Export_General_Keys_Nov_2009.pdf")
cf2013 <- h("inst", "extdata", "Import_Export_General_Keys_Feb_2013.pdf")
# dput(locate_areas(cf2009, pages=1))
desc_2009_1 <- list(structure(c(
52.8637715590013, 36.953717815438, 386.312176777281,
741.8239141251
), .Names = c("top", "left", "bottom", "right")))
desc_2009_raw <- extract_tables(cf2009, pages = 1, area = desc_2009_1)
desc_2009 <- data_frame(
year = "2009",
field = "description",
code = c(desc_2009_raw[[1]][, 1], desc_2009_raw[[1]][, 3]),
value = c(desc_2009_raw[[1]][, 2], desc_2009_raw[[1]][, 4])
)
# dput(locate_areas(cf2009, pages=1))
ports_2009_1 <- list(structure(c(
395.461675700951, 47.642558006804, 511.355328734131,
627.39096358701
), .Names = c("top", "left", "bottom", "right")))
ports_2009_raw <- extract_tables(cf2009, pages = 1, area = ports_2009_1)
ports_2009 <- data_frame(
year = "2009",
field = "port",
code = c(ports_2009_raw[[1]][-1, c(2, 4, 6, 8, 10)]),
value = c(ports_2009_raw[[1]][-1, c(3, 5, 7, 9, 11)])
) %>%
mutate(value = stri_extract_last_regex(value, "(?<=-).+$")) %>%
filter(!(is.na(code) | code == "")) %>%
mutate(code = stri_replace_all_regex(code, "^0(\\d)$", "$1"))
# dput(locate_areas(cf2009, pages=1))
unit_2009_1 <- list(structure(c(
517.45499468325, 50.21604706872, 551.003157403381,
350.23460921035
), .Names = c("top", "left", "bottom", "right")))
unit_2009_raw <- extract_tables(cf2009, pages = 1, area = unit_2009_1)
unit_2009 <- data_frame(
year = "2009",
field = "unit",
code = c(unit_2009_raw[[1]][-1, c(2, 4, 6)]),
value = c(unit_2009_raw[[1]][-1, c(3, 5, 7)])
)
# dput(locate_areas(cf2009, pages=1))
purpose_2009_1 <- list(structure(c(
561.264914613467, 49.500019073486, 599.498439766114,
532.12520503998
), .Names = c("top", "left", "bottom", "right")))
purpose_2009_raw <- extract_tables(cf2009, pages = 1, area = purpose_2009_1)
purpose_2009 <- data_frame(
year = "2009",
field = "purpose",
code = c(purpose_2009_raw[[1]][-1, c(2, 4, 6)]),
value = c(purpose_2009_raw[[1]][-1, c(3, 5, 7)])
)
# dput(extract_areas(cf2009, pages=2))
source_2009_raw <- list(structure(c(
"SOURCE", "", "", "", "", "", "", "", "", "",
"", "A", "C", "D", "F", "I", "P", "R", "U", "W", "", "Plants that are artificially propagated, parts and derivatives",
"Animals bred in captivity, parts and derivatives", "Appendix-I animals bred in captivity for commercial purposes and Appendix-I plants artificially propagated for commercial purposes, as well as parts and derivatives thereof, exported under the provisions of Article VII, paragraph 4 of the Convention",
"Animals born in captivity (F1 or subsequent generations) that do not fulfill the definition of \"bred in captivity\" in Resolution Conf. 10.16, as well as parts and derivatives thereof",
"Confiscated or seized specimens", "Pre-Convention", "Specimens originating from a ranching operation",
"Source unknown (must be justified)", "Specimens taken from the wild"
), .Dim = c(10L, 3L)))
source_2009 <- data_frame(
year = "2009",
field = "source",
code = c(source_2009_raw[[1]][-1, 2]),
value = c(source_2009_raw[[1]][-1, 3])
)
# dput(extract_areas(cf2009, pages=2))
action_2009_raw <- list(structure(c("C", "R", "Cleared", "Refused"), .Dim = c(
2L,
2L
)))
action_2009 <- data_frame(
year = "2009",
field = "action",
code = c(action_2009_raw[[1]][, 1]),
value = c(action_2009_raw[[1]][, 2])
)
# dput(extract_areas(cf2009, pages=2))
disposition_2009_raw <- list(structure(c(
"A", "C", "R", "S", "Abandoned", "Cleared",
"Reexport", "Seized"
), .Dim = c(4L, 2L)))
disposition_2009 <- data_frame(
year = "2009",
field = "disposition",
code = c(disposition_2009_raw[[1]][, 1]),
value = c(disposition_2009_raw[[1]][, 2])
)
# dput(locate_areas(cf2009))
country_2009_2 <- list(NULL, structure(c(
200.817046665151, 46.248193002965, 582.249402578312,
623.19440071496
), .Names = c("top", "left", "bottom", "right")))
country_2009_raw <- extract_tables(cf2009, area = country_2009_2)
country_2009_raw[[2]][, c(4, 5)] <- country_2009_raw[[2]][, 4] %>%
stri_split_regex(" (?=[A-Z]{2}\\-)", simplify = TRUE)
country_2009 <- data_frame(
year = "2009",
field = "country",
code = c(country_2009_raw[[2]][-1, c(2, 3, 4, 5, 6)])
) %>%
separate(code, into = c("code", "value"), sep = "-", extra = "merge", fill = "right") %>%
filter(!is.na(value))
codes_2009 <- bind_rows(
desc_2009,
ports_2009,
unit_2009,
purpose_2009,
source_2009,
action_2009,
disposition_2009,
country_2009
)
# dput(locate_areas(cf2013, pages=1))
desc_2013_1 <- list(structure(c(
54.74760383387, 25.691146589259, 297.20127795527,
762.40058055152
), .Names = c("top", "left", "bottom", "right")))
desc_2013_raw <- extract_tables(cf2013, pages = 1, area = desc_2013_1)
desc_2013_raw[[1]][6, 6] <- paste(desc_2013_raw[[1]][c(6, 7), 6], collapse = " ")
desc_2013_raw[[1]][7, 6] <- ""
desc_2013 <- data_frame(
year = "2013",
field = "description",
code = c(desc_2013_raw[[1]][, c(1, 3, 5)]),
value = c(desc_2013_raw[[1]][, c(2, 4, 6)])
) %>%
filter(code != "")
# Manually add the last entry of the 2013 descriptions table that's missed by
# the extract_tables() call above
desc_2013 <- rbind(
desc_2013,
c(
"2013", "description",
"WPR", "Wood product (including furniture, rainsticks)"
)
)
# dput(locate_areas(cf2013, pages=1))
port_2013_1 <- list(structure(c(
305.02236421725, 47.186647314948, 383.23322683706,
733.0885341074
), .Names = c("top", "left", "bottom", "right")))
port_2013_raw <- extract_tables(cf2013, pages = 1, area = port_2013_1)
port_2013 <- data_frame(
year = "2013",
field = "port",
code = c(port_2013_raw[[1]][-1, -1])
) %>%
filter(code != "") %>%
separate(code, into = c("code", "value"), sep = "-", extra = "merge", fill = "right") %>%
mutate(code = stri_replace_all_regex(code, "^0(\\d)$", "$1"))
# dput(extract_areas(cf2013, pages=1))
unit_2013_raw <- list(structure(c(
"C2", "C3", "CM", "Square Centimeter", "Cubic Centimeters",
"Centimeters", "GM", "KG", "LT", "Grams", "Kilograms", "Liters",
"M2", "M3", "MG", "Square Meters", "Cubic Meters", "Milligrams",
"ML", "MT", "NO", "Milliliters", "Meters", "Number of Specimens"
), .Dim = c(3L, 8L)))
unit_2013 <- data_frame(
year = "2013",
field = "unit",
code = c(unit_2013_raw[[1]][, c(1, 3, 5, 7)]),
value = c(unit_2013_raw[[1]][, c(2, 4, 6, 8)])
)
# dput(extract_areas(cf2013, pages=1))
purpose_2013_raw <- list(structure(c(
"B", "E", "G", "H", "Breeding in captivity or artificial propagation",
"Educational", "Botanic gardens", "Hunting Trophies", "L", "M",
"P", "Q", "Law Enforcement / Judicial / Forensic use only", "Biomedical research",
"Personal", "Circuses/traveling exhibitions", "S", "T", "Y",
"Z", "Scientific", "Commercial", "Reintroduction/introduction into the wild",
"Zoos"
), .Dim = c(4L, 6L)))
purpose_2013 <- data_frame(
year = "2013",
field = "purpose",
code = c(purpose_2013_raw[[1]][, c(1, 3, 5)]),
value = c(purpose_2013_raw[[1]][, c(2, 4, 6)])
)
# dput(extract_areas(cf2013, pages=1))
source_2013_raw <- list(structure(c(
"A", "C", "D", "Plants that are artificially propagated, parts and derivatives",
"Animals bred in captivity, parts and derivatives", "Commercially bred",
"F", "I", "P", "Animals born in captivity, Resolution conf. 10.16",
"Confiscated or seized specimen", "Pre-convention", "R", "U",
"W", "Specimens originating from a ranching operation", "Source unknown (must be justified)",
"Specimens taken from the wild"
), .Dim = c(3L, 6L)))
source_2013 <- data_frame(
year = "2013",
field = "source",
code = c(source_2013_raw[[1]][, c(1, 3, 5)]),
value = c(source_2013_raw[[1]][, c(2, 4, 6)])
)
# dput(extract_areas(cf2013, pages=1))
action_2013 <- structure(c("C", "R", "Cleared", "Refused"), .Dim = c(
2L,
2L
)) %>%
as.data.frame() %>%
rename(code = V1, value = V2) %>%
mutate(year = "2013", field = "action") %>%
select(year, field, code, value)
# dput(extract_areas(cf2013, pages=1))
disposition_2013_raw <- structure(c(
"A", "C", "Abandoned", "Cleared", "R", "S",
"Reexport", "Seized"
), .Dim = c(2L, 4L))
disposition_2013 <- data_frame(
year = "2013",
field = "disposition",
code = c(disposition_2013_raw[, c(1, 3)]),
value = c(disposition_2013_raw[, c(2, 4)])
)
country_2013_raw <- extract_tables(cf2013, pages = 2)
country_2013 <- data_frame(
year = "2013",
field = "country",
code = c(country_2013_raw[[1]])
) %>%
filter(code != "") %>%
separate(code, into = c("code", "value"), sep = "-", extra = "merge", fill = "right")
codes_2013 <- bind_rows(
desc_2013,
port_2013,
unit_2013,
purpose_2013,
source_2013,
action_2013,
disposition_2013,
country_2013
)
# daff::render_diff(daff::diff_data(codes_2009[,2:4], codes_2013[,2:4]))
lemis_codes_ <- full_join(
select(codes_2009, -year), select(codes_2013, -year),
by = c("field", "code")
) %>%
mutate_all(stri_trim_both) %>%
filter(value.x != "Ivory Coast") %>%
filter(!(code == "GB" & !(value.x == "United Kingdom" & value.y == "United Kingdom"))) %>%
filter(!(code == "AN" & value.x == "Curacao")) %>%
mutate(value = ifelse(is.na(value.y), value.x, value.y)) %>%
mutate(value = ifelse(value == "Saint Helena, Ascension, and Tristan da", "Saint Helena, Ascension, and Tristan da Cunha", value)) %>%
mutate(value = ifelse(value == "Saint Vincent & The", "Saint Vincent & The Grenadines", value)) %>%
mutate(value = ifelse(code == "AN", "Curacao / Netherlands Antilles", value)) %>%
mutate(post_feb_2013 = !(is.na(value.y) | value.y == "")) %>%
select(-value.x, -value.y)
lemis_metadata_ <- dplyr::tribble(
~field_name, ~description,
"control_number", "unique ID",
"species_code", "A USFWS code for the species",
"taxa", "an EHA-derived broad taxonomic categorization",
"genus", "genus of the wildlife product",
"species", "species of the wildlife product",
"subspecies", "subspecies of the wildlife product",
"specific_name", "the species-specific common name",
"generic_name", "a general common name",
"description", "description of the type/form of wildlife import (see codes)",
"quantity", "numeric quantity of the shipment",
"unit", "units for the numeric quantity (see codes)",
"value", "reported value of the shipment in dollars",
"country_origin", "ISO2C code for the country of origin of the product (see codes)",
"country_imp_exp", "ISO2C code for the country to/from which the product is shipped (see codes)",
"purpose", "the reason the item is being imported or exported",
"source", "the type of source within the origin country (e.g., wild, bred; see codes)",
"action", "action taken by USFWS on import ((C)leared/(R)efused)",
"disposition", "what happens to the import (see codes)",
"disposition_date", "when disposition occurred",
"shipment_date", "when the shipment arrived",
"import_export", "whether the shipment is an (I)mport or (E)xport",
"port", "port or region of shipment (see codes)",
"us_co", "U.S. party of the shipment",
"foreign_co", "Foreign party of the shipment",
"cleaning_notes", "Notes generated during data cleaning with 'data-raw/clean_lemis.R'"
)
devtools::use_data(lemis_codes_, lemis_metadata_, internal = TRUE, overwrite = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.