svyglmParallel <- function(
data,
design,
formula.list,
FUN,
variables,
terms,
startIndex,
blocksize,
blocks,
APPLYFUN,
conflevel,
excludeTerms,
excludeIntercept)
{
ExpBeta <- l <- NULL
# loop through and process each block of variants
# with foreach, this loop is parallelised
foreach(l = seq_len(blocks),
.combine = rbind,
.multicombine = TRUE,
.inorder = FALSE,
.packages = c('data.table', 'doParallel')) %dopar% {
# first block - will be executed just once
if (l==1) {
message('Processing ', blocksize,
' formulae, batch ', l, ' of ', blocks)
message('-- index1: 1; ', 'index2: ', (blocksize*l))
# subset the data to only include variants that will be
# processsed in this block
df <- data[,c(
which(colnames(data) %in% terms),
startIndex + (seq_len(blocksize*l)))]
# run the models
models <- APPLYFUN(formula.list[seq_len(blocksize*l)],
function(f) summary(FUN(formula = f, design = design, data = df))$coefficients)
names(models) <- variables[seq_len(blocksize*l)]
# detect failed models (return 'try' error)
nullindices <- c(
which(mapply(inherits, models, 'try-error'))
)
if (length(nullindices) > 1) {
print(models[[nullindices[1]]][1])
stop('\nOne or more models have failed. ',
'Please recheck your data and model formula. ',
'In particular, check that your variable names ',
'are valid, i.e., no spaces, do not begin with ',
'a number, no hyphens or other punctuation, et ',
'cetera.')
}
# convert to data frames
wObjects <- APPLYFUN(names(models),
function(x) data.frame(
rep(x, length(rownames(models[[x]]))),
rownames(models[[x]]),
models[[x]],
row.names=rownames(models[[x]])))
# remove intercept and / or specified terms from the output
if (!is.null(excludeTerms) && excludeIntercept == TRUE) {
wObjects <- APPLYFUN(wObjects,
function(x) x[grep(
paste(c('\\(Intercept\\)', excludeTerms), collapse='|'),
rownames(x),
invert=TRUE),])
} else if (is.null(excludeTerms) && excludeIntercept == TRUE) {
wObjects <- APPLYFUN(wObjects,
function(x) x[grep(
'\\(Intercept\\)',
rownames(x),
invert=TRUE),])
} else if (!is.null(excludeTerms) && excludeIntercept == FALSE) {
wObjects <- APPLYFUN(wObjects,
function(x) x[grep(
paste(c(excludeTerms), collapse='|'),
rownames(x),
invert=TRUE),])
}
#Convert the list into a data table
wObjects <- data.table(rbindlist(wObjects), stringsAsFactors=FALSE)
# set colnames
# detect if the y variable in a glm is a continous variable
# (model will contain t stat; otherwise, Z)
if (any(grepl('^t\\.value$', colnames(wObjects))) == TRUE) {
colnames(wObjects) <- c('Variable', 'Term', 'Beta',
'StandardError', 't', 'P')
} else {
colnames(wObjects) <- c('Variable', 'Term', 'Beta',
'StandardError', 'Z', 'P')
}
# sort out final data to return
wObjects$Variable <- as.character(wObjects$Variable)
wObjects$Beta <- as.numeric(as.character(wObjects$Beta))
wObjects$StandardError <- as.numeric(
as.character(wObjects$StandardError))
if (any(grepl('^t$', colnames(wObjects))) == TRUE) {
wObjects$t <- as.numeric(as.character(wObjects$t))
} else {
wObjects$Z <- as.numeric(as.character(wObjects$Z))
}
wObjects$P <- as.numeric(as.character(wObjects$P))
# calculate OR and confidence intervals
wObjects$OR <- exp(wObjects[,'Beta'])
wObjects$ORlower <- wObjects$OR * exp(
qnorm(((1 - (conflevel / 100)) / 2)) * wObjects$StandardError)
wObjects$ORupper <- wObjects$OR * exp(
qnorm(1 - ((1 - (conflevel / 100)) / 2)) * wObjects$StandardError)
# change Inf and NaN to NA
if (any(grepl('^t$', colnames(wObjects)) == TRUE)) {
wObjects$t[is.infinite(wObjects$t)] <- NA
wObjects$t[wObjects$t == 'NaN'] <- NA
} else {
wObjects$Z[is.infinite(wObjects$Z)] <- NA
wObjects$Z[wObjects$Z == 'NaN'] <- NA
}
wObjects$P[is.infinite(wObjects$P)] <- NA
wObjects$P[wObjects$P == 'NaN'] <- NA
wObjects$OR[is.infinite(wObjects$OR)] <- NA
wObjects$OR[wObjects$OR == 'NaN'] <- NA
wObjects$ORlower[is.infinite(wObjects$ORlower)] <- NA
wObjects$ORlower[wObjects$ORlower == 'NaN'] <- NA
wObjects$ORupper[is.infinite(wObjects$ORupper)] <- NA
wObjects$ORupper[wObjects$ORupper == 'NaN'] <- NA
return(wObjects)
}
# final block - will be executed just once
if (l==blocks) {
message('Processing final batch ', l, ' of ',
blocks)
message('-- index1: ', (1+(blocksize*(l-1))), '; ',
'index2: ', length(formula.list))
# subset the data to only include variants that will be
# processsed in this block
df <- data[,c(
which(colnames(data) %in% terms),
startIndex + (((1+(blocksize*(l-1)))):(length(formula.list))))]
# run the models
models <- APPLYFUN(
formula.list[(1+(blocksize*(l-1))):length(formula.list)],
function(f) summary(FUN(formula = f, design = design, data = df))$coefficients)
names(models) <- variables[(1+(blocksize*(l-1))):length(formula.list)]
# detect failed models (return 'try' error)
nullindices <- c(
which(mapply(inherits, models, 'try-error'))
)
if (length(nullindices) > 1) {
print(models[[nullindices[1]]][1])
stop('\nOne or more models have failed. ',
'Please recheck your data and model formula. ',
'In particular, check that your variable names ',
'are valid, i.e., no spaces, do not begin with ',
'a number, no hyphens or other punctuation, et ',
'cetera.')
}
# convert to data frames
wObjects <- APPLYFUN(names(models),
function(x) data.frame(
rep(x, length(rownames(models[[x]]))),
rownames(models[[x]]),
models[[x]],
row.names=rownames(models[[x]])))
# remove intercept and / or specified terms from the output
if (!is.null(excludeTerms) && excludeIntercept == TRUE) {
wObjects <- APPLYFUN(wObjects,
function(x) x[grep(
paste(c('\\(Intercept\\)', excludeTerms), collapse='|'),
rownames(x),
invert=TRUE),])
} else if (is.null(excludeTerms) && excludeIntercept == TRUE) {
wObjects <- APPLYFUN(wObjects,
function(x) x[grep(
'\\(Intercept\\)',
rownames(x),
invert=TRUE),])
} else if (!is.null(excludeTerms) && excludeIntercept == FALSE) {
wObjects <- APPLYFUN(wObjects,
function(x) x[grep(
paste(c(excludeTerms), collapse='|'),
rownames(x),
invert=TRUE),])
}
#Convert the list into a data table
wObjects <- data.table(rbindlist(wObjects), stringsAsFactors=FALSE)
# set colnames
# detect if the y variable in a glm is a continous variable
# (model will contain t stat; otherwise, Z)
if (any(grepl('^t\\.value$', colnames(wObjects))) == TRUE) {
colnames(wObjects) <- c('Variable', 'Term', 'Beta',
'StandardError', 't', 'P')
} else {
colnames(wObjects) <- c('Variable', 'Term', 'Beta',
'StandardError', 'Z', 'P')
}
# sort out final data to return
wObjects$Variable <- as.character(wObjects$Variable)
wObjects$Beta <- as.numeric(as.character(wObjects$Beta))
wObjects$StandardError <- as.numeric(
as.character(wObjects$StandardError))
if (any(grepl('^t$', colnames(wObjects))) == TRUE) {
wObjects$t <- as.numeric(as.character(wObjects$t))
} else {
wObjects$Z <- as.numeric(as.character(wObjects$Z))
}
wObjects$P <- as.numeric(as.character(wObjects$P))
# calculate OR and confidence intervals
wObjects$OR <- exp(wObjects[,'Beta'])
wObjects$ORlower <- wObjects$OR * exp(
qnorm(((1 - (conflevel / 100)) / 2)) * wObjects$StandardError)
wObjects$ORupper <- wObjects$OR * exp(
qnorm(1 - ((1 - (conflevel / 100)) / 2)) * wObjects$StandardError)
# change Inf and NaN to NA
if (any(grepl('^t$', colnames(wObjects)) == TRUE)) {
wObjects$t[is.infinite(wObjects$t)] <- NA
wObjects$t[wObjects$t == 'NaN'] <- NA
} else {
wObjects$Z[is.infinite(wObjects$Z)] <- NA
wObjects$Z[wObjects$Z == 'NaN'] <- NA
}
wObjects$P[is.infinite(wObjects$P)] <- NA
wObjects$P[wObjects$P == 'NaN'] <- NA
wObjects$OR[is.infinite(wObjects$OR)] <- NA
wObjects$OR[wObjects$OR == 'NaN'] <- NA
wObjects$ORlower[is.infinite(wObjects$ORlower)] <- NA
wObjects$ORlower[wObjects$ORlower == 'NaN'] <- NA
wObjects$ORupper[is.infinite(wObjects$ORupper)] <- NA
wObjects$ORupper[wObjects$ORupper == 'NaN'] <- NA
return(wObjects)
}
# any other blocks - executed any number of times between first and final block
if (l>1 && l<blocks) {
message('Processing ', blocksize, ' formulae, batch ',
l, ' of ', blocks)
message('-- index1: ', (1+(blocksize*(l-1))), '; ',
'index2: ', (blocksize*l))
# subset the data to only include variants that will be
# processsed in this block
df <- data[,c(
which(colnames(data) %in% terms),
startIndex + ((1+(blocksize*(l-1))):(blocksize*l)))]
# run the models
models <- APPLYFUN(
formula.list[(1+(blocksize*(l-1))):(blocksize*l)],
function(f) summary(FUN(formula = f, design = design, data = df))$coefficients)
names(models) <- variables[(1+(blocksize*(l-1))):(blocksize*l)]
# detect failed models (return 'try' error)
nullindices <- c(
which(mapply(inherits, models, 'try-error'))
)
if (length(nullindices) > 1) {
print(models[[nullindices[1]]][1])
stop('\nOne or more models have failed. ',
'Please recheck your data and model formula. ',
'In particular, check that your variable names ',
'are valid, i.e., no spaces, do not begin with ',
'a number, no hyphens or other punctuation, et ',
'cetera.')
}
# convert to data frames
wObjects <- APPLYFUN(names(models),
function(x) data.frame(
rep(x, length(rownames(models[[x]]))),
rownames(models[[x]]),
models[[x]],
row.names=rownames(models[[x]])))
# remove intercept and / or specified terms from the output
if (!is.null(excludeTerms) && excludeIntercept == TRUE) {
wObjects <- APPLYFUN(wObjects,
function(x) x[grep(
paste(c('\\(Intercept\\)', excludeTerms), collapse='|'),
rownames(x),
invert=TRUE),])
} else if (is.null(excludeTerms) && excludeIntercept == TRUE) {
wObjects <- APPLYFUN(wObjects,
function(x) x[grep(
'\\(Intercept\\)',
rownames(x),
invert=TRUE),])
} else if (!is.null(excludeTerms) && excludeIntercept == FALSE) {
wObjects <- APPLYFUN(wObjects,
function(x) x[grep(
paste(c(excludeTerms), collapse='|'),
rownames(x),
invert=TRUE),])
}
#Convert the list into a data table
wObjects <- data.table(rbindlist(wObjects), stringsAsFactors=FALSE)
# set colnames
# detect if the y variable in a glm is a continous variable
# (model will contain t stat; otherwise, Z)
if (any(grepl('^t\\.value$', colnames(wObjects))) == TRUE) {
colnames(wObjects) <- c('Variable', 'Term', 'Beta',
'StandardError', 't', 'P')
} else {
colnames(wObjects) <- c('Variable', 'Term', 'Beta',
'StandardError', 'Z', 'P')
}
# sort out final data to return
wObjects$Variable <- as.character(wObjects$Variable)
wObjects$Beta <- as.numeric(as.character(wObjects$Beta))
wObjects$StandardError <- as.numeric(
as.character(wObjects$StandardError))
if (any(grepl('^t$', colnames(wObjects))) == TRUE) {
wObjects$t <- as.numeric(as.character(wObjects$t))
} else {
wObjects$Z <- as.numeric(as.character(wObjects$Z))
}
wObjects$P <- as.numeric(as.character(wObjects$P))
# calculate OR and confidence intervals
wObjects$OR <- exp(wObjects[,'Beta'])
wObjects$ORlower <- wObjects$OR * exp(
qnorm(((1 - (conflevel / 100)) / 2)) * wObjects$StandardError)
wObjects$ORupper <- wObjects$OR * exp(
qnorm(1 - ((1 - (conflevel / 100)) / 2)) * wObjects$StandardError)
# change Inf and NaN to NA
if (any(grepl('^t$', colnames(wObjects)) == TRUE)) {
wObjects$t[is.infinite(wObjects$t)] <- NA
wObjects$t[wObjects$t == 'NaN'] <- NA
} else {
wObjects$Z[is.infinite(wObjects$Z)] <- NA
wObjects$Z[wObjects$Z == 'NaN'] <- NA
}
wObjects$P[is.infinite(wObjects$P)] <- NA
wObjects$P[wObjects$P == 'NaN'] <- NA
wObjects$OR[is.infinite(wObjects$OR)] <- NA
wObjects$OR[wObjects$OR == 'NaN'] <- NA
wObjects$ORlower[is.infinite(wObjects$ORlower)] <- NA
wObjects$ORlower[wObjects$ORlower == 'NaN'] <- NA
wObjects$ORupper[is.infinite(wObjects$ORupper)] <- NA
wObjects$ORupper[wObjects$ORupper == 'NaN'] <- NA
return(wObjects)
}
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.