Description Usage Arguments Value Details Author(s) References Examples
Calculates the Modified Moment confidence bound for the maximum error in an audit population according to the methodology described by Dworin & Grimlund (1986).
1 | modified.moment(bookValues, auditValues, pop.type = "inventory", confidence = 0.95)
|
bookValues |
A vector of book values from sample. |
auditValues |
A vector of corresponding audit values from the sample. |
pop.type |
A character defining the type of population audited. inventory for inventory populations. accounts for populations of accounts receivable. |
confidence |
The amount of confidence desired from the bound (on a scale from 0 to 1), defaults to 95% confidence. |
An estimate of the mean taint per dollar unit in the population.
EMPTY FOR NOW
Koen Derks, k.derks@nyenrode.nl
Dworin, L., & Grimlund, R. A. (1986). Dollar-unit sampling: A comparison of the quasi-Bayesian and moment bounds. Accounting Review, 36-57.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | # Create an imaginary data set
bookValues <- rgamma(n = 2400, shape = 1, rate = 0.001)
error.rate <- 0.1
error <- sample(0:1, 2400, TRUE, c(1-error.rate, error.rate))
taint <- rchisq(n = 2400, df = 1) / 10
auditValues <- bookValues - (error * taint * bookValues)
frame <- data.frame( bookValues = round(bookValues,2),
auditValues = round(auditValues,2))
# Draw a sample
samp.probs <- frame$bookValues/sum(frame$bookValues)
sample.no <- sample(1:nrow(frame), 100, FALSE, samp.probs)
sample <- frame[sample.no, ]
# Calculate bound
modified.moment(bookValues = sample$bookValues,
auditValues = sample$auditValues,
pop.type = "inventory",
confidence = 0.95)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.