#' Calculate and plot the density of the studentized cauchy means, via simulation.
#'
#' @param nobs Sample size for studentized means.
#' @param nsamp Number of Monte Carlo samples. Defaults to 10000.
#' @return A five-dimensional array of test levels (if altevalue equals hypoth) or power otherwise. Dimensions are test, distribution, alternative, alternative value, and first dimension sample size.
#'
#' @examples
#' fun.studentizedcaucyplot(10,nsamp=100)
#'
#' @export
#' @importFrom stats rcauchy sd density median
fun.studentizedcaucyplot<-function(nobs,nsamp=10000){
densities<-vector("list",length(nobs))
ry<-NULL
u<-array(rcauchy(max(nobs)*nsamp),c(max(nobs),nsamp))
for(j in seq(length(nobs))){
xbar<-apply(u[seq(nobs[j]),],2,mean)
s<-apply(u[seq(nobs[j]),],2,sd)
t<-xbar/(s/sqrt(nobs[j]))
densities[[j]]<-density(c(t,-t))
ry<-range(c(ry,densities[[j]]$y))
}
plot(range(densities[[1]]$x),ry,type="n",xlab="Data Value",
main="Symmetrized Density of Studentized Cauchy")
for(j in seq(length(nobs))) lines(densities[[j]],lty=j)
legend(0,median(ry),lty=seq(length(nobs)),legend=nobs)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.