source("test/main_pkgs.R")
## -----------------------------------------------------------------------------
load(file_LAI) # tidy_GEE_data
load(file_PML)
delta_PML <- map2(lst_dynamic, lst_static, `-`)
lst_pheno <- readRDS(file_pheno)
years_gpp <- 2003:2017
# %% ---------------------------------------------------------------------------
grid <- grid_010.TP_cliped2
grid_010.TP@data <- data.frame(id = 1:length(grid_010.TP))
ind_full <- raster::extract(raster(grid_010.TP), grid_010.TP_cliped)
ind_lcMask <- grid$id_cliped
lst_LAI2 <- map_depth(lst_LAI, 2, ~do.call(cbind, .))
nrow <- length(ind_lcMask)
indexes <- 1:nrow %>% set_names(., .)
lst_id <- overlap_id(grid_010.TP_cliped2, TP_poly_veg)
d_id <- map(lst_id[-c(7, 10)], ~data.table(I = .x)) %>% melt_list("region")
{
InitCluster(12)
temp <- foreach(l = lst_pheno[5:7], i = icount()) %do% {
info <- match2(l$year, years_gpp)
l_pheno <- map(l[c(1,3)] %>% rm_empty, ~.[, info$I_x])
SOS <- l_pheno$SOS
EOS <- l_pheno$EOS
l_PML <- map(delta_PML, ~.[ind_full, info$I_y][ind_lcMask, ])
ET <- abind(l_PML[-1], along = 3) %>% apply_3d(FUN = rowSums2)
Y <- c(list(ET = ET), l_PML)[c(2, 1, 3, 4, 5)]
l_LAI <- map_depth(lst_LAI2, 2, ~.x[, info$I_y])
res = foreach(LAI = l_LAI) %do% {
X = c(list(SOS = SOS[ind_lcMask, ], EOS = EOS[ind_lcMask, ]), LAI)
foreach(j = seq_along(Y) %>% set_names(names(Y))) %do% {
lst_data <- c(Y[j], X)
ans <- foreach(k = indexes, icount()) %dopar%
{
runningId(k, 1000)
d <- map(lst_data, ~ .x[k, ]) %>% as.data.table()
pcor2(d)
# xs <- map(1:nrow, function(i) map(l, ~.x[i, ]) %>% as.data.table)
} %>% rm_empty()
}
}
l_pcor <- map_depth(res, 3, "estimate") %>% map_depth(2, melt_cbind)
l_pvalue <- map_depth(res, 3, "p.value") %>% map_depth(2, melt_cbind)
list(pcor = l_pcor, pvalue = l_pvalue)
}
lst_pcor <- transpose(temp) %>% map(
function(l) melt_tree(l, c("type_source", "type_LAI", "response"))
)
save(lst_pcor, file = "chp7_dynamic-static_GPP&ET_pcor.rda")
}
# grid@data <- l_PML$GPP %>% as.data.table()
# plot(grid)
load("chp7_dynamic-static_GPP&ET_pcor.rda")
{
bands = c("GPP", "ET", "Ec", "Es", "Ei")
bands_zh = c("总初级生产力", "蒸散发", "植被蒸腾", "土壤蒸发", "顶冠截流")
indicator = c("生长季开始时间", "生长季结束时间", "年LAI最大值", "生长季LAI均值")
lst <-map(lst_pcor, ~melt(.x, id.vars = c("type_source", "type_LAI", "response", "I")))
df <- lst$pcor %>% cbind(pvalue = lst$pvalue$value) %>% plyr::mutate(mask = pvalue <= 0.1)
df$variable %<>% as.character() %>% factor(c("SOS", "EOS", "yearMax", "gsMean"), indicator)
df$response %<>% factor(bands, bands)
}
## 2.0 另一种制图方法卫星的平均
{
df2 <- df[type_source %in% sources[5:7] & type_LAI == "raw", ] %>%
plyr::mutate(type_source = factor(type_source, sources[5:7]))
SpatialPixel <- grid_010.TP_cliped2
d <- df2[, .(value = mean(value), mask = sum(mask) >= 2), .(response, I, variable)]
ngrid <- length(SpatialPixel)
d_temp <- expand.grid(I = 1:ngrid, response = bands, variable = indicator) %>% data.table()
d <- merge(d_temp, d, all.x = TRUE, sort = FALSE)
d$response %<>% factor(bands, bands_zh)
devices = c("jpg", "pdf")[2]
plot_pcor_spatial3(d, SpatialPixel, devices, TRUE, prefix = "", 10)
}
tbl <- get_regional_sign(d, d_id, by = c("response", "region", "variable"))
## 2.1 raw LAI -----------------------------------------------------------------
{
df2 <- df[type_source %in% sources[5:7] & type_LAI == "raw", ] %>%
plyr::mutate(type_source = factor(type_source, sources[5:7]))
devices = c("jpg", "pdf")[2]
SpatialPixel <- grid_010.TP_cliped2
plot_pcor_spatial2(df2, "GPP", SpatialPixel, devices, TRUE)
plot_pcor_spatial2(df2, "ET", SpatialPixel, devices, TRUE)
plot_pcor_spatial2(df2, "Ec", SpatialPixel, devices, TRUE)
plot_pcor_spatial2(df2, "Es", SpatialPixel, devices, TRUE)
plot_pcor_spatial2(df2, "Ei", SpatialPixel, devices, TRUE)
data <- merge(df2, d_id)
cor <- data[is.finite(value), mean(value), .(type_source, response, variable, region)] %>% dcast2("variable", "V1")
d_sign <- data[is.finite(value), sign_perc(value, mask), .(type_source, response, variable, region)]
pos <- dcast2(d_sign[, -6], "variable", "pos")
neg <- dcast2(d_sign[, -5], "variable", "neg")
write_list2xlsx(list(cor, pos, neg), "tbl_7-5 dynamic-static pcor3.xlsx")
}
## 2.2 smoothed LAI ------------------------------------------------------------
# 结果相差不太,不再展示
{
df2 <- df[type_source %in% sources[5:7] & type_LAI == "smoothed", ] %>%
plyr::mutate(type_source = factor(type_source, sources[5:7]))
devices = c("jpg", "pdf")[2]
prefix = "smoothed_"
SpatialPixel <- grid_010.TP_cliped2
plot_pcor_spatial2(df2, "GPP", SpatialPixel, devices, TRUE, prefix)
plot_pcor_spatial2(df2, "ET", SpatialPixel, devices, TRUE, prefix)
plot_pcor_spatial2(df2, "Ec", SpatialPixel, devices, TRUE, prefix)
plot_pcor_spatial2(df2, "Es", SpatialPixel, devices, TRUE, prefix)
}
# grid <- grid_010.TP_cliped2
# overlap_id(grid, TP_poly_veg)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.