Description Usage Arguments Value References Examples
View source: R/identifyModules.R
Module Identification
| 1 2 3 4 | 
| graph | an  | 
| data | either a matrix, where the columns correspond to the variables and the rows to the observations.
Or a  | 
| phenotype | a vector with the values for a phenotype of interest. It must have the same number of observations as data. | 
| covars | a  | 
| annotations | a  | 
| merge.overlapping | if  | 
| better.than.components | if  | 
| alpha | significance level for accepting the modules. | 
| level | Must be set to the name of the column to be used, if modules should be calculated for pathways. | 
| representative.method | the method, that is used for the calculation of the module representation. Currently implemented: "eigenmetabolite" and "average" | 
| correction.method | the method that used for multiple testing correction ("bonferroni", "BH", "BY", "fdr", "holm", "hochberg", "hommel", "none").
Default is set to bonferroni. See  | 
| BPPARAM | An instance of the
 | 
| scoringFunction | a scoring function accepting parameters 
moduleRepresentatives, phenotype and covars. See  | 
a list consisting of four elements.
Do2017MoDentify
\insertRefChuang2007MoDentify
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | data(qmdiab.data)
data(qmdiab.annos)
data(qmdiab.phenos)
data <- qmdiab.data[, 1:75]
annotations <- qmdiab.annos[1:75]
net.graph <- generateNetwork(data = data, annotations = annotations)
mods <- identifyModules(
  graph = net.graph, data = data, annotations =
    annotations, phenotype = qmdiab.phenos$T2D, alpha = 0.05
)
pathway.graph <- generatePathwaysNetwork(data = data, annotations = annotations)
pathway.modules <- identifyModules(
  graph = pathway.graph$network, data = data,
  phenotype = qmdiab.phenos$T2D, level = pathway.graph$level, annotations = annotations,
  alpha = 0.05
)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.