#' Sample species patch realizations simulations according to the selected sampling design
#' @template SamplingDesign
#' @template popdata
#' @template seed
#' @template n1
#' @template yvar
#' @template f_max
#'
#' @noRd
createSample <- function(SamplingDesign="ACS", popdata, seed, n1, yvar, f_max) {
if (SamplingDesign=="ACS") {
alldata <- createACS(
popdata=popdata, seed=seed, n1=n1, yvar=yvar)
} else if (SamplingDesign=="RACS") {
alldata <- createRACS(
popdata=popdata, seed=seed, n1=n1, yvar=yvar, f_max=f_max)
} else if (SamplingDesign=="SRS") {
alldata <- createSRS(
popdata=popdata, seed=seed, n1=n1)
}
return(alldata)
}
#' prep dataset and names of output data
#' @template SamplingDesign
#' @param alldata NEED DEF
#' @noRd
prepDatasets <- function(SamplingDesign="ACS", alldata) {
if (SamplingDesign!="ACS" & SamplingDesign!="RACS") {
# datasets to apply simple mean/variance/ratio estimator
#dats <- "alldata"
SRSWOR_data <- NA
#alldata <- NA
result <- list(SRSWOR_data)
names(result) <- "SRSWOR_data"
return(result)
}
if (SamplingDesign=="ACS" | SamplingDesign=="RACS") {
SRSWOR_data <- alldata %>% filter(.data$Sampling=="SRSWOR")
alldata %<>% filter(.data$Sampling!="Edge")
# apply simple mean/variance & simple ratio estimator to:
#dats <- c("SRSWOR_data", "alldata")
result <- list(SRSWOR_data, alldata)
names(result) <- c("SRSWOR_data", "alldata")
return(result)
}
}
#' Fill m fields with NAs if statistics are not gathered
#'
#' @param dat
#' @noRd
fillmCharNA <- function(dat) {
dat$mean_m <- NA
dat$median_m <- NA
dat$max_m <- NA
dat$min_m <- NA
dat$mean_uniq_m <- NA
dat$median_uniq_m <- NA
dat$max_uniq_m <- NA
dat$min_uniq_m <- NA
return(dat)
}
#' calculate statistics about m
#'
#' @param dat
#' @param results
#' @param yvar
#' @param popvar
#' @param realvar
#' @noRd
fillmChar <- function(dat, results, yvar, popvar, realvar) {
YVAR <- sym(yvar)
POPVAR <- sym(popvar)
REALVAR <- sym(realvar)
temp <- dat %>% filter(!!YVAR > 0)
prelim_results <- temp %>%
ungroup() %>%
#group_by(!!POPVAR, !!REALVAR) %>%
dplyr::summarise(
mean_m = Mean(.data$m),
median_m = median(.data$m),
max_m = max(.data$m),
min_m = min(.data$m),
mean_uniq_m = Mean(unique(.data$m)),
median_uniq_m = median(unique(.data$m)),
max_uniq_m = max(unique(.data$m)),
min_uniq_m = min(unique(.data$m))
)# %>%
#ungroup() %>%
#select(-c(.data[[realvar]], .data[[popvar]]))
results %>% cbind(prelim_results)
}
#' Save misc info about the sample?
#'
#' @param k
#' @param tseed
#' @param pop
#' @param dat
#' @template n1
#' @param realvar
#' @param popvar
#' @param results
#' @noRd
addMiscInfo <- function(k, tseed, pop, dat, n1, realvar, popvar, results){
results$simulation = k
results$seed = tseed
results$N.ACS.plots = dim(dat)[1] - n1
results$N.Total.plots = dim(dat)[1]
results$realvar = pop %$% unique(eval(parse(text=realvar))) #eval(parse(text=paste({{pop}}, "$", realvar, sep="")))[1]
results$popvar = pop %$% unique(eval(parse(text=popvar))) #eval(parse(text=paste(deparse(substitute(pop)), "$", popvar, sep="")))[1]
results$N.SRSWOR.plots = n1
return(results)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.