test_that("calculatePopulationSummaryStatistics", {
CactusRealizationSummary <- calcPopSummaryStats(
popdata = CactusRealizations,
summaryvar = c("Stricta", "Pusilla", "Cactus",
"MEPR_on_Stricta", "CACA_on_Stricta", "Percent_Cover_Stricta",
"Height_Stricta", "Old_Moth_Evidence_Stricta"),
popvar = "n.networks",
rvar = c("MEPR_on_Stricta", "CACA_on_Stricta",
"Percent_Cover_Stricta", "Height_Stricta",
"Old_Moth_Evidence_Stricta"),
nrow=30,
ncol=30
)
# TEST RATIO VARIABLE CALCULATIONS
# population 1
pop_1_stricta <- CactusRealizations %>% filter(population==1, Stricta==1)
mean_pop_1_CACA_on_Stricta <- CactusRealizationSummary[[2]] %>%
filter(population==1, variable=="CACA_on_Stricta") %$%
Mean
mean_pop_1_MEPR_on_Stricta <- CactusRealizationSummary[[2]] %>%
filter(population==1, variable=="MEPR_on_Stricta") %$%
Mean
mean_pop_1_Old_Moth_Evidence_Stricta <- CactusRealizationSummary[[2]] %>%
filter(population==1, variable=="Old_Moth_Evidence_Stricta") %$%
Mean
var_pop_1_CACA_on_Stricta <- CactusRealizationSummary[[2]] %>%
filter(population==1, variable=="CACA_on_Stricta") %$%
Var
var_pop_1_MEPR_on_Stricta <- CactusRealizationSummary[[2]] %>%
filter(population==1, variable=="MEPR_on_Stricta") %$%
Var
var_pop_1_Old_Moth_Evidence_Stricta <- CactusRealizationSummary[[2]] %>%
filter(population==1, variable=="Old_Moth_Evidence_Stricta") %$%
Var
CV_pop_1_CACA_on_Stricta <- CactusRealizationSummary[[2]] %>%
filter(population==1, variable=="CACA_on_Stricta") %$%
CV
CV_pop_1_MEPR_on_Stricta <- CactusRealizationSummary[[2]] %>%
filter(population==1, variable=="MEPR_on_Stricta") %$%
CV
CV_pop_1_Old_Moth_Evidence_Stricta <- CactusRealizationSummary[[2]] %>%
filter(population==1, variable=="Old_Moth_Evidence_Stricta") %$%
CV
expect_equal(
mean_pop_1_CACA_on_Stricta,
mean(pop_1_stricta$CACA_on_Stricta)
)
expect_equal(
mean_pop_1_MEPR_on_Stricta,
mean(pop_1_stricta$MEPR_on_Stricta)
)
expect_equal(
mean_pop_1_Old_Moth_Evidence_Stricta,
mean(pop_1_stricta$Old_Moth_Evidence_Stricta)
)
expect_equal(
var_pop_1_CACA_on_Stricta,
PopVariance(pop_1_stricta$CACA_on_Stricta)
)
expect_equal(
var_pop_1_MEPR_on_Stricta,
PopVariance(pop_1_stricta$MEPR_on_Stricta)
)
expect_equal(
var_pop_1_Old_Moth_Evidence_Stricta,
PopVariance(pop_1_stricta$Old_Moth_Evidence_Stricta)
)
expect_equal(
CV_pop_1_CACA_on_Stricta,
popCV(pop_1_stricta$CACA_on_Stricta)
)
expect_equal(
CV_pop_1_MEPR_on_Stricta,
popCV(pop_1_stricta$MEPR_on_Stricta)
)
expect_equal(
CV_pop_1_Old_Moth_Evidence_Stricta,
popCV(pop_1_stricta$Old_Moth_Evidence_Stricta)
)
# population 6
pop_6_stricta <- CactusRealizations %>% filter(population==6, Stricta==1)
mean_pop_6_CACA_on_Stricta <- CactusRealizationSummary[[2]] %>%
filter(population==6, variable=="CACA_on_Stricta") %$%
Mean
mean_pop_6_MEPR_on_Stricta <- CactusRealizationSummary[[2]] %>%
filter(population==6, variable=="MEPR_on_Stricta") %$%
Mean
mean_pop_6_Old_Moth_Evidence_Stricta <- CactusRealizationSummary[[2]] %>%
filter(population==6, variable=="Old_Moth_Evidence_Stricta") %$%
Mean
var_pop_6_CACA_on_Stricta <- CactusRealizationSummary[[2]] %>%
filter(population==6, variable=="CACA_on_Stricta") %$%
Var
var_pop_6_MEPR_on_Stricta <- CactusRealizationSummary[[2]] %>%
filter(population==6, variable=="MEPR_on_Stricta") %$%
Var
var_pop_6_Old_Moth_Evidence_Stricta <- CactusRealizationSummary[[2]] %>%
filter(population==6, variable=="Old_Moth_Evidence_Stricta") %$%
Var
expect_equal(
mean_pop_6_CACA_on_Stricta,
mean(pop_6_stricta$CACA_on_Stricta)
)
expect_equal(
mean_pop_6_MEPR_on_Stricta,
mean(pop_6_stricta$MEPR_on_Stricta)
)
expect_equal(
mean_pop_6_Old_Moth_Evidence_Stricta,
mean(pop_6_stricta$Old_Moth_Evidence_Stricta)
)
expect_equal(
var_pop_6_CACA_on_Stricta,
PopVariance(pop_6_stricta$CACA_on_Stricta)
)
expect_equal(
var_pop_6_MEPR_on_Stricta,
PopVariance(pop_6_stricta$MEPR_on_Stricta)
)
expect_equal(
var_pop_6_Old_Moth_Evidence_Stricta,
PopVariance(pop_6_stricta$Old_Moth_Evidence_Stricta)
)
})
test_that("Sampling Bias and Relative Efficiency, population 6, SamplingDesign=ACS, N.SRSWOR.plots==100", {
patch_data_summary_wide <- createWidePopSummaryStats(
popsummarystats = CactusRealizationSummary,
ovar = "Stricta",
rvar = c("MEPR_on_Stricta", "CACA_on_Stricta", "Percent_Cover_Stricta",
"Height_Stricta", "Old_Moth_Evidence_Stricta")
)
population_6 <- patch_data_summary_wide %>% filter(population==6)
# WHERE DOES SIMULATION DATA COME FROM
# MANUALLY CALCULATE MSE and RE
temp_sim_data <- simulation_data %>% filter(
population==6,
SamplingDesign=="ACS",
N.SRSWOR.plots==100
)
temp_sim_data_ratio <- simulation_data %>% filter(
population==6,
SamplingDesign=="ACS",
N.SRSWOR.plots==100,
Stricta_mean_observed > 0
)
# occupancy variables
mean_MSE_Stricta <- sum(
(
# observed
temp_sim_data$Stricta_mean_observed -
# true
population_6$Stricta_mean
)^2
# n simulations
)/dim(temp_sim_data)[1]
RB_Stricta <- 100 * (
mean(temp_sim_data$Stricta_mean_observed) - population_6$Stricta_mean
) / population_6$Stricta_mean
RE_Stricta <- (
population_6$Stricta_var/unique(temp_sim_data$N.Total.plots_mean) *
(1 - unique(temp_sim_data$N.Total.plots_mean)/population_6$N)
) / mean_MSE_Stricta
# ratio variables
mean_MSE_CACA_on_Stricta <- sum(
(
# observed
temp_sim_data_ratio$CACA_on_Stricta_ratio_mean_observed -
# true
population_6$CACA_on_Stricta_ratio_mean
)^2
# n simulations
)/dim(temp_sim_data_ratio)[1]
mean_MSE_MEPR_on_Stricta <- sum(
(
# observed
temp_sim_data_ratio$MEPR_on_Stricta_ratio_mean_observed -
# true
population_6$MEPR_on_Stricta_ratio_mean
)^2
# n simulations
)/dim(temp_sim_data_ratio)[1]
mean_MSE_Old_Moth_Evidence_Stricta <- sum(
(
# observed
temp_sim_data_ratio$Old_Moth_Evidence_Stricta_ratio_mean_observed -
# true
population_6$Old_Moth_Evidence_Stricta_ratio_mean
)^2
# n simulations
)/dim(temp_sim_data_ratio)[1]
RB_CACA_on_Stricta <- 100 * (
mean(temp_sim_data$CACA_on_Stricta_ratio_mean_observed) -
population_6$CACA_on_Stricta_ratio_mean
) / population_6$CACA_on_Stricta_ratio_mean
RB_MEPR_on_Stricta <- 100 * (
mean(temp_sim_data$MEPR_on_Stricta_ratio_mean_observed) -
population_6$MEPR_on_Stricta_ratio_mean
) / population_6$MEPR_on_Stricta_ratio_mean
RB_Old_Moth_Evidence_Stricta <- 100 * (
mean(temp_sim_data$Old_Moth_Evidence_Stricta_ratio_mean_observed) -
population_6$Old_Moth_Evidence_Stricta_ratio_mean
) / population_6$Old_Moth_Evidence_Stricta_ratio_mean
RE_CACA_on_Stricta <- (
population_6$CACA_on_Stricta_ratio_var/unique(temp_sim_data_ratio$N.Total.plots_mean) *
(1 - unique(temp_sim_data_ratio$N.Total.plots_mean)/population_6$N)
) / mean_MSE_CACA_on_Stricta
RE_MEPR_on_Stricta <- (
population_6$MEPR_on_Stricta_ratio_var/unique(temp_sim_data_ratio$N.Total.plots_mean) *
(1 - unique(temp_sim_data_ratio$N.Total.plots_mean)/population_6$N)
) / mean_MSE_MEPR_on_Stricta
RE_Old_Moth_Evidence_Stricta <- (
population_6$Old_Moth_Evidence_Stricta_ratio_var/unique(temp_sim_data_ratio$N.Total.plots_mean) *
(1 - unique(temp_sim_data_ratio$N.Total.plots_mean)/population_6$N)
) / mean_MSE_Old_Moth_Evidence_Stricta
# CALCULATE MSE and RE USING FUNCTIONS
example_bias <- calculateSamplingBias(
population_data_summary = population_6,
simulation_data = temp_sim_data,
sampling.grouping.variables = c("N.Total.plots_mean", "N.SRSWOR.plots",
"SamplingDesign"),
population.grouping.variables = "population",
ovar = "Stricta",
rvar = c("MEPR_on_Stricta", "CACA_on_Stricta", "Percent_Cover_Stricta",
"Height_Stricta", "Old_Moth_Evidence_Stricta")
)
RE_values <- calculateRE(
population_data = population_6,
MSE_ComparisonSamplingDesign = example_bias,
population.grouping.variables = "population",
sample.size.variable = "N.Total.plots_mean",
ovar = "Stricta",
rvar = c("MEPR_on_Stricta", "CACA_on_Stricta", "Percent_Cover_Stricta",
"Height_Stricta", "Old_Moth_Evidence_Stricta")
)
# TEST FUNCTION CALCULATIONS
# occupancy variables
# MSE
expect_equal(
mean_MSE_Stricta,
example_bias$Stricta_mean_MSE
)
# RB
expect_equal(
RB_Stricta,
example_bias$Stricta_mean_RB
)
# RE
expect_equal(
RE_Stricta,
RE_values$Stricta_RE
)
# ratio variables
# MSE
expect_equal(
mean_MSE_CACA_on_Stricta,
example_bias$CACA_on_Stricta_ratio_mean_MSE
)
expect_equal(
mean_MSE_MEPR_on_Stricta,
example_bias$MEPR_on_Stricta_ratio_mean_MSE
)
expect_equal(
mean_MSE_Old_Moth_Evidence_Stricta,
example_bias$Old_Moth_Evidence_Stricta_ratio_mean_MSE
)
# RB
expect_equal(
RB_CACA_on_Stricta,
example_bias$CACA_on_Stricta_ratio_mean_RB
)
expect_equal(
RB_MEPR_on_Stricta,
example_bias$MEPR_on_Stricta_ratio_mean_RB
)
expect_equal(
RB_Old_Moth_Evidence_Stricta,
example_bias$Old_Moth_Evidence_Stricta_ratio_mean_RB
)
# RE
expect_equal(
RE_CACA_on_Stricta,
RE_values$CACA_on_Stricta_ratio_RE
)
expect_equal(
RE_MEPR_on_Stricta,
RE_values$MEPR_on_Stricta_ratio_RE
)
expect_equal(
RE_Old_Moth_Evidence_Stricta,
RE_values$Old_Moth_Evidence_Stricta_ratio_RE
)
})
test_that("Sampling Bias and Relative Efficiency, population 1, SamplingDesign=ACS, N.SRSWOR.plots==40", {
patch_data_summary_wide <- createWidePopSummaryStats(
popsummarystats = CactusRealizationSummary,
ovar = "Stricta",
rvar = c("MEPR_on_Stricta", "CACA_on_Stricta", "Percent_Cover_Stricta",
"Height_Stricta", "Old_Moth_Evidence_Stricta")
)
population_1 <- patch_data_summary_wide %>% filter(population==1)
# MANUALLY CALCULATE MSE and RE
temp_sim_data <- simulation_data %>% filter(
population==1,
SamplingDesign=="ACS",
N.SRSWOR.plots==40
)
temp_sim_data_ratio <- simulation_data %>% filter(
population==1,
SamplingDesign=="ACS",
N.SRSWOR.plots==40,
Stricta_mean_observed > 0
)
# occupancy variables
mean_MSE_Stricta <- sum(
(
# observed
temp_sim_data$Stricta_mean_observed -
# true
population_1$Stricta_mean
)^2
# n simulations
)/dim(temp_sim_data)[1]
RE_Stricta = (
population_1$Stricta_var/unique(temp_sim_data$N.Total.plots_mean) *
(1 - unique(temp_sim_data$N.Total.plots_mean)/population_1$N)
) / mean_MSE_Stricta
# ratio variables
mean_MSE_CACA_on_Stricta <- sum(
(
# observed
temp_sim_data_ratio$CACA_on_Stricta_ratio_mean_observed -
# true
population_1$CACA_on_Stricta_ratio_mean
)^2
# n simulations
)/dim(temp_sim_data_ratio)[1]
mean_MSE_MEPR_on_Stricta <- sum(
(
# observed
temp_sim_data_ratio$MEPR_on_Stricta_ratio_mean_observed -
# true
population_1$MEPR_on_Stricta_ratio_mean
)^2
# n simulations
)/dim(temp_sim_data_ratio)[1]
mean_MSE_Old_Moth_Evidence_Stricta <- sum(
(
# observed
temp_sim_data_ratio$Old_Moth_Evidence_Stricta_ratio_mean_observed -
# true
population_1$Old_Moth_Evidence_Stricta_ratio_mean
)^2
# n simulations
)/dim(temp_sim_data_ratio)[1]
RE_CACA_on_Stricta = (
population_1$CACA_on_Stricta_ratio_var/unique(temp_sim_data_ratio$N.Total.plots_mean) *
(1 - unique(temp_sim_data_ratio$N.Total.plots_mean)/population_1$N)
) / mean_MSE_CACA_on_Stricta
RE_MEPR_on_Stricta = (
population_1$MEPR_on_Stricta_ratio_var/unique(temp_sim_data_ratio$N.Total.plots_mean) *
(1 - unique(temp_sim_data_ratio$N.Total.plots_mean)/population_1$N)
) / mean_MSE_MEPR_on_Stricta
RE_Old_Moth_Evidence_Stricta = (
population_1$Old_Moth_Evidence_Stricta_ratio_var/unique(temp_sim_data_ratio$N.Total.plots_mean) *
(1 - unique(temp_sim_data_ratio$N.Total.plots_mean)/population_1$N)
) / mean_MSE_Old_Moth_Evidence_Stricta
# CALCULATE MSE and RE USING FUNCTIONS
example_bias = calculateSamplingBias(
population_data_summary = population_1,
simulation_data = temp_sim_data,
sampling.grouping.variables = c("N.Total.plots_mean", "N.SRSWOR.plots",
"SamplingDesign"),
population.grouping.variables = "population",
ovar = "Stricta",
rvar = c("MEPR_on_Stricta", "CACA_on_Stricta", "Percent_Cover_Stricta",
"Height_Stricta", "Old_Moth_Evidence_Stricta")
)
RE_values <- calculateRE(
population_data = population_1,
MSE_ComparisonSamplingDesign = example_bias,
population.grouping.variables = "population",
sample.size.variable = "N.Total.plots_mean",
ovar = "Stricta",
rvar = c("MEPR_on_Stricta", "CACA_on_Stricta", "Percent_Cover_Stricta",
"Height_Stricta", "Old_Moth_Evidence_Stricta")
)
# TEST FUNCTION CALCULATIONS
# occupancy variables
# MSE
expect_equal(
mean_MSE_Stricta,
example_bias$Stricta_mean_MSE
)
# RE
expect_equal(
RE_Stricta,
RE_values$Stricta_RE
)
# ratio variables
# MSE
expect_equal(
mean_MSE_CACA_on_Stricta,
example_bias$CACA_on_Stricta_ratio_mean_MSE
)
expect_equal(
mean_MSE_MEPR_on_Stricta,
example_bias$MEPR_on_Stricta_ratio_mean_MSE
)
expect_equal(
mean_MSE_Old_Moth_Evidence_Stricta,
example_bias$Old_Moth_Evidence_Stricta_ratio_mean_MSE
)
# RE
expect_equal(
RE_CACA_on_Stricta,
RE_values$CACA_on_Stricta_ratio_RE
)
expect_equal(
RE_MEPR_on_Stricta,
RE_values$MEPR_on_Stricta_ratio_RE
)
expect_equal(
RE_Old_Moth_Evidence_Stricta,
RE_values$Old_Moth_Evidence_Stricta_ratio_RE
)
})
test_that("Sampling Bias and Relative Efficiency, population 1, SamplingDesign=RACS with new_y_HT formula, N.SRSWOR.plots==40", {
patch_data_summary_wide <- createWidePopSummaryStats(
PopulationSummaryStatistics = CactusRealizationSummary,
ovar = "Stricta",
rvar = c("MEPR_on_Stricta", "CACA_on_Stricta", "Percent_Cover_Stricta",
"Height_Stricta", "Old_Moth_Evidence_Stricta")
)
population_1 <- patch_data_summary_wide %>% filter(population==1)
# MANUALLY CALCULATE MSE and RE
temp_sim_data <- simdata_new_yHT_re %>% filter(
population==1,
SamplingDesign=="RACS",
N.SRSWOR.plots==40
)
temp_sim_data_ratio <- simdata_new_yHT_re %>% filter(
population==1,
SamplingDesign=="RACS",
N.SRSWOR.plots==40,
Stricta_mean_observed > 0
)
# occupancy variables
mean_MSE_Stricta <- sum(
(
# observed
temp_sim_data$Stricta_mean_observed -
# true
population_1$Stricta_mean
)^2
# n simulations
)/dim(temp_sim_data)[1]
RE_Stricta = (
population_1$Stricta_var/unique(temp_sim_data$N.Total.plots_mean) *
(1 - unique(temp_sim_data$N.Total.plots_mean)/population_1$N)
) / mean_MSE_Stricta
# ratio variables
mean_MSE_CACA_on_Stricta <- sum(
(
# observed
temp_sim_data_ratio$CACA_on_Stricta_ratio_mean_observed -
# true
population_1$CACA_on_Stricta_ratio_mean
)^2
# n simulations
)/dim(temp_sim_data_ratio)[1]
mean_MSE_MEPR_on_Stricta <- sum(
(
# observed
temp_sim_data_ratio$MEPR_on_Stricta_ratio_mean_observed -
# true
population_1$MEPR_on_Stricta_ratio_mean
)^2
# n simulations
)/dim(temp_sim_data_ratio)[1]
mean_MSE_Old_Moth_Evidence_Stricta <- sum(
(
# observed
temp_sim_data_ratio$Old_Moth_Evidence_Stricta_ratio_mean_observed -
# true
population_1$Old_Moth_Evidence_Stricta_ratio_mean
)^2
# n simulations
)/dim(temp_sim_data_ratio)[1]
RE_CACA_on_Stricta = (
population_1$CACA_on_Stricta_ratio_var/unique(temp_sim_data_ratio$N.Total.plots_mean) *
(1 - unique(temp_sim_data_ratio$N.Total.plots_mean)/population_1$N)
) / mean_MSE_CACA_on_Stricta
RE_MEPR_on_Stricta = (
population_1$MEPR_on_Stricta_ratio_var/unique(temp_sim_data_ratio$N.Total.plots_mean) *
(1 - unique(temp_sim_data_ratio$N.Total.plots_mean)/population_1$N)
) / mean_MSE_MEPR_on_Stricta
RE_Old_Moth_Evidence_Stricta = (
population_1$Old_Moth_Evidence_Stricta_ratio_var/unique(temp_sim_data_ratio$N.Total.plots_mean) *
(1 - unique(temp_sim_data_ratio$N.Total.plots_mean)/population_1$N)
) / mean_MSE_Old_Moth_Evidence_Stricta
# CALCULATE MSE and RE USING FUNCTIONS
example_bias = calculateSamplingBias(
population_data_summary = population_1,
simulation_data = temp_sim_data,
sampling.grouping.variables = c("N.Total.plots_mean", "N.SRSWOR.plots",
"SamplingDesign"),
population.grouping.variables = "population",
ovar = "Stricta",
rvar = c("MEPR_on_Stricta", "CACA_on_Stricta", "Percent_Cover_Stricta",
"Height_Stricta", "Old_Moth_Evidence_Stricta")
)
RE_values <- calculateRE(
population_data = population_1,
MSE_ComparisonSamplingDesign = example_bias,
population.grouping.variables = "population",
sample.size.variable = "N.Total.plots_mean",
ovar = "Stricta",
rvar = c("MEPR_on_Stricta", "CACA_on_Stricta", "Percent_Cover_Stricta",
"Height_Stricta", "Old_Moth_Evidence_Stricta")
)
# TEST FUNCTION CALCULATIONS
# occupancy variables
# MSE
expect_equal(
mean_MSE_Stricta,
example_bias$Stricta_mean_MSE
)
# RE
expect_equal(
RE_Stricta,
RE_values$Stricta_RE
)
# ratio variables
# MSE
expect_equal(
mean_MSE_CACA_on_Stricta,
example_bias$CACA_on_Stricta_ratio_mean_MSE
)
expect_equal(
mean_MSE_MEPR_on_Stricta,
example_bias$MEPR_on_Stricta_ratio_mean_MSE
)
expect_equal(
mean_MSE_Old_Moth_Evidence_Stricta,
example_bias$Old_Moth_Evidence_Stricta_ratio_mean_MSE
)
# RE
expect_equal(
RE_CACA_on_Stricta,
RE_values$CACA_on_Stricta_ratio_RE
)
expect_equal(
RE_MEPR_on_Stricta,
RE_values$MEPR_on_Stricta_ratio_RE
)
expect_equal(
RE_Old_Moth_Evidence_Stricta,
RE_values$Old_Moth_Evidence_Stricta_ratio_RE
)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.