rm(list=ls())
setwd('~/Dropbox/mv_normal/R')
library(Rcpp)
library(RcppArmadillo)
library(mvnMix)
library(parallel)
# source('~/Dropbox/mv_normal/R/mvn_plrt.R')
d <- 2
m <- 2
n <- 200
alpha <- c(0.3,0.7)
mu <- matrix(c(-1,0,1,0),nrow=2,ncol=2)
sigma <- cbind(diag(2),diag(2))
nrep <- 1000
outfilename <- "pmle_test.RData"
ncores <- detectCores()
cl <- makePSOCKcluster(rep('localhost',ncores),master='localhost')
sink("pmle_test.out", append=T)
DGPset <- c(1:1)
for (DGP in DGPset)
{
time_start <- proc.time()
set.seed(123456)
clusterEvalQ(cl,set.seed(123456))
# y <- rmvnmix(n,alpha,mu,sigma)
if (m==1){
y <- array(rnorm(n*d*nrep),dim=c(n,d,nrep))
} else{
y <- replicate(nrep, rmvnmix(n,alpha,mu,sigma))
}
# clusterEvalQ(cl, library(normalregMix))
clusterEvalQ(cl, library(parallel))
clusterEvalQ(cl, library(mixtools))
clusterEvalQ(cl, library(Rcpp))
clusterEvalQ(cl, library(RcppArmadillo))
clusterEvalQ(cl, library(mvnMix))
# clusterEvalQ(cl, source('~/Dropbox/mv_normal/R/mvn_plrt.R'))
clusterExport(cl,varlist=c("y","m"))
pmleout <- parLapply(cl,1:nrep, function(j) mvnmixPMLE(y=y[,,j], m=m))
coefsum <- t(sapply(pmleout,"[[","coefficients"))
logliksum <- t(sapply(pmleout,"[[","loglik"))
time_end <- proc.time()
runtime <- time_end - time_start
} # end of DGP loop
rm(y)
stopCluster(cl)
sigma1 <- sigma[,c(1,2)]
sigma1vec <- sigma1[lower.tri(sigma1, diag=TRUE)]
sigma2 <- sigma[,c(3,4)]
sigma2vec <- sigma2[lower.tri(sigma2, diag=TRUE)]
bias <- colMeans(coefsum) - c(alpha,mu,sigma1vec,sigma2vec)
stdev <- apply(coefsum,2,sd)
save.image(file = outfilename)
sink()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.