#' @title Variance Heterogeneity Genome-wide Association Study
#' @description The package provides models and tests for variance
#' heterogeneity genome-wide association study (vGWAS).
#' "_PACKAGE"
#' @name package-vGWAS
#' @author Xia Shen
#' @references Shen, X., Pettersson, M., Ronnegard, L. and Carlborg, O.
#' (2011): \bold{Inheritance beyond plain heritability:
#' variance-controlling genes in \emph{Arabidopsis thaliana}}.
#' \emph{PLoS Genetics}, \bold{8}, e1002839.\cr
#' @references Ronnegard, L., Shen, X. and Alam, M. (2011):
#' \bold{hglm: A Package for Fitting Hierarchical Generalized
#' Linear Models}. \emph{The R Journal}, \bold{2}(2), 20-28.\cr
#' @references Brown, M. B. and Forsythe, A.B. (1974).
#' \bold{Robust tests for equality of variances.} \emph{Journal
#' of the American Statistical Association}, \bold{69}, 364-367.\cr
#' @references Levene, H. (1960). \bold{Robust Tests for Equality
#' of Variances}, \emph{in Contributions to Probability and Statistics},
#' ed. I. Olkin, Palo Alto, CA: Stanford Univ. Press.\cr
#' @seealso R package \code{lawstat} for other types of nonparametric
#' variance tests and \code{onewaystats}.
#' @keywords GWAS
NULL
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.