# -----------------------------------------------------------
# Figure 1 script
# simulated outcomes in whole pop w/o waning 12+ vs. 18+
# -----------------------------------------------------------
# source files ----------------------------------------------
#source("inst/extdata/scripts/manuscript/data_wrangling_for_figures.R")
#source("inst/extdata/scripts/manuscript/tables_script.R")
# load required packages -------------------------------------------------------
library(tidyr)
library(dplyr)
library(ggplot2)
library(cowplot)
# read in results df -----------------------------------------------------------
# df_all <- readRDS("/rivm/s/ainsliek/results/impact_vac/resubmission/results_all.rds")
df_all <- readRDS("S:/R/ainsliek/results/impact_vac/resubmission/results_all.rds")
# population size for determining outcomes per 100,000 people ------------------
age_dist <- c(0.10319920, 0.11620856, 0.12740219, 0.12198707,
0.13083463,0.14514332, 0.12092904, 0.08807406,
0.04622194)
n <- 17407585 # Dutch population size
n_vec <- n * age_dist
# data wrangling for plots -----------------------------------------------------
all_res_for_plot <- df_all %>%
ungroup() %>%
mutate(
outcome = factor(case_when(
target_variable == "inc infection" ~ "Daily Infections",
target_variable == "inc case" ~ "Daily Cases",
target_variable == "inc hosp" ~ "Hospital Admissions",
target_variable == "inc icu" ~ "IC Admissions",
target_variable == "inc death" ~ "Daily Deaths"
), levels = c("Daily Infections", "Daily Cases", "Hospital Admissions", "IC Admissions", "Daily Deaths")),
age_group2 = case_when(
age_group == 1 ~ "0-9 years",
age_group == 2 ~ "10-19 years",
age_group %in% c(3:9) ~ ">19 years"
),
age_group2 = factor(age_group2, levels = c("0-9 years", "10-19 years", ">19 years")),
age_group = case_when(
age_group == 1 ~ "0-9",
age_group == 2 ~ "10-19",
age_group == 3 ~ "20-29",
age_group == 4 ~ "30-39",
age_group == 5 ~ "40-49",
age_group == 6 ~ "50-59",
age_group == 7 ~ "60-69",
age_group == 8 ~ "70-79",
age_group == 9 ~ "80+"
),
scenario_id = factor(scenario_id, levels = c("Vaccination in 5+",
"Vaccination in 12+",
"Vaccination in 18+"))
)
# summarise by age_group2 levels
df_fig1 <- all_res_for_plot %>%
group_by(scenario_id, outcome, date, sample, age_group2) %>%
summarise(sum = sum(value)) %>%
ungroup() %>%
group_by(scenario_id, outcome, date, age_group2) %>%
summarise(mean = mean(sum),
q025 = quantile(sum, probs = 0.025),
q25 = quantile(sum, probs = 0.25),
q75 = quantile(sum, probs = 0.75),
q975 = quantile(sum, probs = 0.975)
) %>%
select(date, scenario_id, age_group2, outcome, mean:q975) %>%
# calculate cases per 100,000 people
mutate(pop_size = case_when(
age_group2 == "0-9 years" ~ n_vec[1],
age_group2 == "10-19 years" ~ n_vec[2],
age_group2 == ">19 years" ~ sum(n_vec[3:9])
))
# total
df_total <- df_fig1 %>%
ungroup() %>%
group_by(scenario_id, outcome, date) %>%
summarise_at(vars(mean:pop_size), sum)
# ------------------------------------------------------------------------------
# Figure 1 ---------------------------------------------------------------------
# Plot outcomes per day (per 100,000 people in each age group) by vac strategy
my_round <- function(x){round(x, 3)}
# infections -------------------------------------------------------------------
fig1_inf <- ggplot(data = df_fig1 %>%
filter(#scenario_id == "Vaccination in 5+",
#age_group2 == "10-19 years",
#date >= as.Date("2021-11-01"),
#date <= as.Date("2021-12-31"),
outcome == "Daily Infections"),
aes(x = date, y = (mean/pop_size)*100000, fill = scenario_id, linetype = scenario_id)) +
geom_ribbon(aes(ymin = (q025/pop_size)*100000, ymax = (q975/pop_size)*100000, fill = scenario_id), alpha = 0.1) +
geom_line(aes(color = scenario_id), size = 1) +
scale_linetype_manual(values = c("dotted", "dashed", "solid")) +
labs(y = "Infections per 100,000 people", x = "Date") +
scale_y_continuous(expand = c(0, 0), limits = c(0,NA), labels = my_round) +
scale_x_date(date_breaks = "2 weeks", date_labels = "%d %b %Y") +
theme(legend.position = "bottom",
panel.background = element_blank(),
axis.text.x = element_text(angle = 45, hjust = 1, size = 14),
axis.text.y = element_text(size = 14),
strip.text.x = element_text(size = 14),
legend.text = element_text(size = 14),
legend.title = element_text(size = 14),
legend.box="vertical",
axis.title=element_text(size=14, face="bold")) +
facet_wrap(~age_group2, nrow = 3) +
guides(fill=guide_legend("Scenario"),
colour = guide_legend("Scenario"),
linetype = guide_legend("Scenario"))
#fig1_inf
# ------------------------------------------------------------------------------
# hospital admissions ----------------------------------------------------------
fig1_hosp <- ggplot(data = df_fig1 %>%
filter(#scenario_id == "Vaccination in 5+",
#age_group2 == "10-19 years",
#date >= as.Date("2021-11-01"),
#date <= as.Date("2021-12-31"),
outcome == "Hospital Admissions"),
aes(x = date, y = (mean/pop_size)*100000, fill = scenario_id, linetype = scenario_id)) +
geom_ribbon(aes(ymin = (q025/pop_size)*100000, ymax = (q975/pop_size)*100000, fill = scenario_id), alpha = 0.1) +
geom_line(aes(color = scenario_id), size = 1) +
scale_linetype_manual(values = c("dotted", "dashed", "solid")) +
labs(y = "Hospital Admissions per 100,000 people", x = "Date") +
scale_y_continuous(expand = c(0, 0), limits = c(0,NA), labels = my_round) +
scale_x_date(date_breaks = "2 weeks", date_labels = "%d %b %Y") +
theme(legend.position = "bottom",
panel.background = element_blank(),
axis.text.x = element_text(angle = 45, hjust = 1, size = 14),
axis.text.y = element_text(size = 14),
strip.text.x = element_text(size = 14),
legend.text = element_text(size = 14),
legend.title = element_text(size = 14),
legend.box="vertical",
axis.title=element_text(size=14, face="bold")) +
facet_wrap(~age_group2, nrow = 3, scales = "free_y"
) +
guides(fill=guide_legend("Scenario"),
colour = guide_legend("Scenario"),
linetype = guide_legend("Scenario"))
#fig1_hosp
# ------------------------------------------------------------------------------
# ICU admissions ---------------------------------------------------------------
fig1_icu <- ggplot(data = df_fig1 %>%
filter(#scenario_id == "Vaccination in 5+",
#age_group2 == "10-19 years",
#date >= as.Date("2021-11-01"),
#date <= as.Date("2021-12-31"),
outcome == "IC Admissions"),
aes(x = date, y = (mean/pop_size)*100000, fill = scenario_id, linetype = scenario_id)) +
geom_ribbon(aes(ymin = (q025/pop_size)*100000, ymax = (q975/pop_size)*100000, fill = scenario_id), alpha = 0.1) +
geom_line(aes(color = scenario_id), size = 1) +
scale_linetype_manual(values = c("dotted", "dashed", "solid")) +
labs(y = "IC Admissions per 100,000 people", x = "Date") +
scale_y_continuous(expand = c(0, 0), limits = c(0,NA), labels = my_round) +
scale_x_date(date_breaks = "2 weeks", date_labels = "%d %b %Y") +
theme(legend.position = "bottom",
panel.background = element_blank(),
axis.text.x = element_text(angle = 45, hjust = 1, size = 14),
axis.text.y = element_text(size = 14),
strip.text.x = element_text(size = 14),
legend.text = element_text(size = 14),
legend.title = element_text(size = 14),
legend.box="vertical",
axis.title=element_text(size=14, face="bold")) +
facet_wrap(~age_group2, nrow = 3, scales = "free_y"
) +
guides(fill=guide_legend("Scenario"),
colour = guide_legend("Scenario"),
linetype = guide_legend("Scenario"))
#fig1_icu
# ------------------------------------------------------------------------------
# deaths -----------------------------------------------------------------------
fig1_death <- ggplot(data = df_fig1 %>%
filter(#scenario_id == "Vaccination in 5+",
#age_group2 == "10-19 years",
#date >= as.Date("2021-11-01"),
#date <= as.Date("2021-12-31"),
outcome == "Daily Deaths"),
aes(x = date, y = (mean/pop_size)*100000, fill = scenario_id,
linetype = scenario_id)) +
geom_ribbon(aes(ymin = (q025/pop_size)*100000, ymax = (q975/pop_size)*100000,
fill = scenario_id), alpha = 0.1) +
geom_line(aes(color = scenario_id), size = 1) +
scale_linetype_manual(values = c("dotted", "dashed", "solid")) +
labs(y = "Deaths per 100,000 people", x = "Date") +
scale_y_continuous(expand = c(0, 0), limits = c(0,NA), labels = my_round) +
scale_x_date(date_breaks = "2 weeks", date_labels = "%d %b %Y") +
theme(legend.position = "bottom",
panel.background = element_blank(),
axis.text.x = element_text(angle = 45, hjust = 1, size = 14),
axis.text.y = element_text(size = 14),
strip.text.x = element_text(size = 14),
legend.text = element_text(size = 14),
legend.title = element_text(size = 14),
legend.box="vertical",
axis.title=element_text(size=14, face="bold")) +
facet_wrap(~age_group2, nrow = 3, scales = "free_y"
) +
guides(fill=guide_legend("Scenario"),
colour = guide_legend("Scenario"),
linetype = guide_legend("Scenario"))
#fig1_death
# ------------------------------------------------------------------------------
# combine plots ----------------------------------------------------------------
fig1 <- plot_grid(fig1_inf + theme(legend.position = "none"),
fig1_hosp + theme(legend.position = "none"),
fig1_icu + theme(legend.position = "none"),
fig1_death + theme(legend.position = "none"),
labels = "AUTO", nrow = 1#, rel_heights = c(1,1,1.5)
)
legend <- get_legend(
fig1_inf + theme(legend.box.margin = margin(0, 0, 0, 12))
)
figure1 <- plot_grid(fig1, legend, rel_heights = c(3,.2), nrow = 2)
figure1
# ggsave(filename = "/rivm/s/ainsliek/results/impact_vac/resubmission/figure1_per100k.pdf",
# plot = figure1, units = "in", height = 10, width = 26, dpi = 300)
ggsave(filename = "S:/R/ainsliek/results/impact_vac/resubmission/figure1_per100k.pdf",
plot = figure1, units = "in", height = 10, width = 26, dpi = 300)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.