#' Low-Rank Subspace Clustering
#'
#' Low-Rank Subspace Clustering (LRSC) constructs the connectivity of the data by solving
#' \deqn{\textrm{min}_C \|C\|_*\quad\textrm{such that}\quad A=AC,~C=C^\top}
#' for the uncorrupted data scenario where \eqn{A} is a column-stacked
#' data matrix. In the current implementation, the first equality constraint
#' for reconstructiveness of the data can be relaxed by solving
#' \deqn{\textrm{min}_C \|C\|_* + \frac{\tau}{2} \|A-AC\|_F^2 \quad\textrm{such that}\quad C=C^\top}
#' controlled by the regularization parameter \eqn{\tau}. If you are interested in
#' enabling a more general class of the problem suggested by authors,
#' please contact maintainer of the package.
#'
#' \deqn{\textrm{min}_C \|C\|_*\quad\textrm{such that}\quad D=DC}
#' for column-stacked data matrix \eqn{D} and \eqn{\|\cdot \|_*} is the
#' nuclear norm which is relaxation of the rank condition. If you are interested in
#' full implementation of the algorithm with sparse outliers and noise, please
#' contact the maintainer.
#'
#' @param data an \eqn{(n\times p)} matrix of row-stacked observations.
#' @param k the number of clusters (default: 2).
#' @param type type of the problem to be solved.
#' @param tau regularization parameter for relaxed-constraint problem.
#'
#' @return a named list of S3 class \code{T4cluster} containing
#' \describe{
#' \item{cluster}{a length-\eqn{n} vector of class labels (from \eqn{1:k}).}
#' \item{algorithm}{name of the algorithm.}
#' }
#'
#' @examples
#' \donttest{
#' ## generate a toy example
#' set.seed(10)
#' tester = genLP(n=100, nl=2, np=1, iso.var=0.1)
#' data = tester$data
#' label = tester$class
#'
#' ## do PCA for data reduction
#' proj = base::eigen(stats::cov(data))$vectors[,1:2]
#' dat2 = data%*%proj
#'
#' ## run LRSC algorithm with k=2,3,4 with relaxed/exact solvers
#' out2rel = LRSC(data, k=2, type="relaxed")
#' out3rel = LRSC(data, k=3, type="relaxed")
#' out4rel = LRSC(data, k=4, type="relaxed")
#'
#' out2exc = LRSC(data, k=2, type="exact")
#' out3exc = LRSC(data, k=3, type="exact")
#' out4exc = LRSC(data, k=4, type="exact")
#'
#' ## extract label information
#' lab2rel = out2rel$cluster
#' lab3rel = out3rel$cluster
#' lab4rel = out4rel$cluster
#'
#' lab2exc = out2exc$cluster
#' lab3exc = out3exc$cluster
#' lab4exc = out4exc$cluster
#'
#' ## visualize
#' opar <- par(no.readonly=TRUE)
#' par(mfrow=c(2,3))
#' plot(dat2, pch=19, cex=0.9, col=lab2rel, main="LRSC Relaxed:K=2")
#' plot(dat2, pch=19, cex=0.9, col=lab3rel, main="LRSC Relaxed:K=3")
#' plot(dat2, pch=19, cex=0.9, col=lab4rel, main="LRSC Relaxed:K=4")
#' plot(dat2, pch=19, cex=0.9, col=lab2exc, main="LRSC Exact:K=2")
#' plot(dat2, pch=19, cex=0.9, col=lab3exc, main="LRSC Exact:K=3")
#' plot(dat2, pch=19, cex=0.9, col=lab4exc, main="LRSC Exact:K=4")
#' par(opar)
#' }
#'
#' @references
#' \insertRef{vidal_low_2014}{T4cluster}
#'
#' @concept subspace
#' @export
LRSC <- function(data, k=2, type=c("relaxed","exact"), tau=1.0){
## PREPARE : EXPLICIT INPUTS
X = prec_input_matrix(data)
myk = max(1, round(k))
mytau = max(sqrt(.Machine$double.eps), as.double(tau))
myexact = match.arg(type)
## RUN EVERYTHING IN C++
cpprun = cpp_LRSC(X, myk, myexact, mytau)
## WRAP
output = list()
output$cluster = round(as.vector(cpprun$labels+1))
output$algorithm = "LRSC"
return(structure(output, class="T4cluster"))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.