#' Barycenter of Images according to Cuturi & Doucet (2014)
#'
#' Using entropic regularization for Wasserstein barycenter computation, \code{imagebary14C}
#' finds a \emph{barycentric} image \eqn{X^*} given multiple images \eqn{X_1,X_2,\ldots,X_N}.
#' Please note the followings; (1) we only take a matrix as an image so please
#' make it grayscale if not, (2) all images should be of same size - no resizing is performed.
#'
#' @param images a length-\eqn{N} list of same-size image matrices of size \eqn{(m\times n)}.
#' @param p an exponent for the order of the distance (default: 2).
#' @param weights a weight of each image; if \code{NULL} (default), uniform weight is set. Otherwise,
#' it should be a length-\eqn{N} vector of nonnegative weights.
#' @param lambda a regularization parameter; if \code{NULL} (default), a paper's suggestion
#' would be taken, or it should be a nonnegative real number.
#' @param ... extra parameters including \describe{
#' \item{abstol}{stopping criterion for iterations (default: 1e-8).}
#' \item{init.image}{an initial weight image (default: uniform weight).}
#' \item{maxiter}{maximum number of iterations (default: 496).}
#' \item{nthread}{number of threads for OpenMP run (default: 1).}
#' \item{print.progress}{a logical to show current iteration (default: \code{TRUE}).}
#' }
#'
#' @return an \eqn{(m\times n)} matrix of the barycentric image.
#'
#' @references
#' \insertRef{cuturi_fast_2014}{T4transport}
#'
#' @examples
#' \dontrun{
#' #----------------------------------------------------------------------
#' # MNIST Data with Digit 3
#' #
#' # EXAMPLE 1 : Very Small Example for CRAN; just showing how to use it!
#' # EXAMPLE 2 : Medium-size Example for Evolution of Output
#' #----------------------------------------------------------------------
#' # EXAMPLE 1
#' data(digit3)
#' datsmall = digit3[1:2]
#' outsmall = imagebary14C(datsmall, maxiter=3)
#'
#' # EXAMPLE 2 : Barycenter of 100 Images
#' # RANDOMLY SELECT THE IMAGES
#' data(digit3)
#' dat2 = digit3[sample(1:2000, 100)] # select 100 images
#'
#' # RUN SEQUENTIALLY
#' run10 = imagebary14C(dat2, maxiter=10) # first 10 iterations
#' run20 = imagebary14C(dat2, maxiter=10, init.image=run10) # run 40 more
#' run50 = imagebary14C(dat2, maxiter=30, init.image=run20) # run 50 more
#'
#' # VISUALIZE
#' opar <- par(no.readonly=TRUE)
#' par(mfrow=c(2,3), pty="s")
#' image(dat2[[sample(100,1)]], axes=FALSE, main="a random image")
#' image(dat2[[sample(100,1)]], axes=FALSE, main="a random image")
#' image(dat2[[sample(100,1)]], axes=FALSE, main="a random image")
#' image(run10, axes=FALSE, main="barycenter after 10 iter")
#' image(run20, axes=FALSE, main="barycenter after 20 iter")
#' image(run50, axes=FALSE, main="barycenter after 50 iter")
#' par(opar)
#' }
#'
#' @seealso \code{\link{bary14C}}
#'
#' @concept image
#' @export
imagebary14C <- function(images, p=2, weights=NULL, lambda=NULL, ...){
# CHECK THE INPUT
name.f = "imagebary14C"
check.f = check_images(images, name.f)
# GRID AND TRANSFORM
imgsize = dim(images[[1]])
coordx = seq(from=0, to=1, length.out=imgsize[2])
coordy = seq(from=1, to=0, length.out=imgsize[1])
coords = expand.grid(coordx, coordy)
dxy = as.matrix(stats::dist(coords))
nimage = length(images)
# OTHER INFORMATION
myp = max(1, as.double(p))
mymarginal = list()
for (i in 1:nimage){
mymarginal[[i]] = as.vector(t(images[[i]]))
}
myweights = valid_multiple_weight(weights, nimage, name.f)
myweights = myweights/base::sum(myweights)
if ((length(lambda)==0)&&(is.null(lambda))){
mylambda = 60/(stats::median(dxy)^myp) # choice of the paper
} else {
mylambda = 1/max(100*.Machine$double.eps, as.double(lambda))
}
params = list(...)
pnames = names(params)
myiter = max(1, round(ifelse((("maxiter")%in%pnames), params$maxiter, 496)))
mytol = max(100*.Machine$double.eps, as.double(ifelse(("abstol"%in%pnames), params$abstol, 1e-8)))
myshow = as.logical(ifelse(("print.progress"%in%pnames), params$print.progress, FALSE))
mynthr = max(1, round(ifelse(("nthread"%in%pnames), params$nthread, 1))) # OpenMP Threads
nsupport = base::nrow(coords)
if ("init.image" %in% pnames){
par_init = as.vector(t(params$init.image))
par_init = par_init/base::sum(par_init)
if ((length(par_init)!=nsupport)||(any(par_init < 0))){
stop(paste0("* imagebary14C : 'init.image' should be of matching size as other images with nonnegative values."))
}
} else {
par_init = rep(1/nsupport, nsupport)
}
# RUN, WRAP, AND RETURN
myoutput = routine_bary14C(dxy, mymarginal, myweights, myp, mylambda, myiter, mytol, myshow, par_init, mynthr)
myshaped = matrix(myoutput, imgsize[1], imgsize[2], byrow=TRUE)
return(myshaped)
}
# library(Barycenter)
# data("three")
# image050 = three[1:50]
# image100 = three[1:100]
# image200 = three[1:200]
#
# hey1 = imageC14(image050, maxiter=1000)
# hey2 = imageC14(image100, maxiter=10)
# hey3 = imageC14(image200, maxiter=10)
# par(mfrow=c(1,3))
# image(matrix(hey1, 28, 28, byrow=TRUE))
# image(matrix(hey2, 28, 28, byrow=TRUE))
# image(matrix(hey3, 28, 28, byrow=TRUE))
# x11()
# par(mfrow=c(5,5), pty="s")
# for (i in 1:25){
# image(three[[i]])
# }
#
# data("digit3")
# pdat = digit3[1:10]
# out10 = imagebary14C(pdat, maxiter=10, print.progress=TRUE)
# out20 = imagebary14C(pdat, maxiter=10, print.progress=TRUE, init.image=out10)
# out50 = imagebary14C(pdat, maxiter=30, print.progress=TRUE, init.image=out20)
# out100 = imagebary14C(pdat, maxiter=50, print.progress=TRUE, init.image=out50)
# out200 = imagebary14C(pdat, maxiter=100, print.progress=TRUE, init.image=out100)
# out500 = imagebary14C(pdat, maxiter=300, print.progress=TRUE, init.image=out200)
#
# par(mfrow=c(1,3), pty="s")
# image(out10, main="after 10 iterations")
# image(out100, main="after 100 iterations")
# image(out500, main="after 500 iterations")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.