#' HDDS Calculation
#'
#' HDDS calculations
#'
#' Rpackage file: DietaryDiversity.R
#'
#' @param data RHoMIS data with HDDS information
#'
#' @return
#' @export
#'
#' @examples
hdds_calc <- function(data) {
colnames(data) <- tolower(colnames(data))
ten_groups <- c(
"grainsrootstubers", # grains roots_tubers
"legumes", # pulses
"nuts_seeds", # nuts_seeds
"veg_leafy", # green_veg
"vita_veg_fruit", # vitA_veg vitA_fruits
"vegetables", # other_veg
"fruits", # other_fruits
"meat", # meat_poultry organ_meat fish_seafood
"eggs", # eggs
"milk_dairy"
) # milk
# Food groups for 24hr recall named differently (fruit spelt differently)
ten_groups_24hr <- c(
"grainsrootstubers", # grains roots_tubers
"legumes", # pulses
"nuts_seeds", # nuts_seeds
"veg_leafy", # green_veg
"vita_veg_fruit", # vitA_veg vitA_fruits
"vegetables", # other_veg
"fruit", # other_fruits
"meat", # meat_poultry organ_meat fish_seafood
"eggs", # eggs
"milk_dairy"
)
fourteen_groups <- c(
"grains",
"roots_tubers",
"pulses",
"nuts_seeds",
"milk",
"organ_meat",
"meat_poultry",
"fish_seafood",
"eggs",
"green_veg",
"vita_veg",
"vita_fruits",
"other_veg",
"other_fruits"
)
potential_columns <- c(
"good_season",
"bad_season",
"last_month",
"source_good",
"source_bad",
"source_last_month",
"24hr"
)
ten_groups_columns <- sapply(potential_columns, function(x) {
if (x != "24hr") {
return(paste0(ten_groups, "_", x))
}
if (x == "24hr") {
return(paste0(ten_groups_24hr, "_", x))
}
}, simplify = F)
fourteen_groups_columns <- sapply(potential_columns, function(x) paste0(fourteen_groups, "_", x), simplify = F)
time_values <- c("daily", "fewperweek", "weekly", "fewpermonth", "monthly", "never")
conversion <- c(1, 1, 1, 0, 0, 0)
unit_conv_tibble <- tibble::as_tibble(list(
survey_value = time_values,
conversion = conversion,
id_rhomis_dataset = rep("x", length(time_values))
))
last_24hr_conv_tibble <- tibble::as_tibble(list(
survey_value = c("y", "n"),
conversion = c(1, 0),
id_rhomis_dataset = c("x", "x")
))
outputs_10 <- c()
outputs_14 <- c()
# HDDS for fourteen food groups, looking at the bad season
if (all(fourteen_groups_columns$bad_season %in% colnames(data))) {
# indicator_search_hdds_bad_season
bad_season_14 <- switch_units(data[, fourteen_groups_columns$bad_season], unit_tibble = unit_conv_tibble, id_vector = rep("x", nrow(data)))
colnames(bad_season_14) <- gsub("_bad_season", "", colnames(bad_season_14))
bad_season_10 <- collapse_14_groups(bad_season_14)
HDDS_bad_season <- rowSums(bad_season_10, na.rm = T)
HDDS_bad_season[rowSums(is.na(bad_season_10)) == ncol(bad_season_10)] <- NA
outputs_14$hdds_bad_season <- HDDS_bad_season
# Looking at the sources of the food
if (all(fourteen_groups_columns$source_bad %in% colnames(data))) {
# indicator_search_hdds_bad_season_bought
bad_season_source_14 <- data[, fourteen_groups_columns$source_bad]
colnames(bad_season_source_14) <- gsub("source_bad", "", colnames(bad_season_14))
if (nrow(bad_season_source_14)>1){
bad_season_bought_14 <- tibble::as_tibble(sapply(bad_season_source_14, function(x) as.numeric(grepl("bought", x))))
}
if (nrow(bad_season_source_14)==1){
bad_season_bought_14 <- tibble::as_tibble_row(sapply(bad_season_source_14, function(x) as.numeric(grepl("bought", x))))
}
bad_season_bought_10 <- collapse_14_groups(bad_season_bought_14)
bad_season_bought_10[bad_season_10 == 0 & !is.na(bad_season_10)] <- 0
HDDS_bad_season_bought <- rowSums(bad_season_bought_10, na.rm = T)
HDDS_bad_season_bought[rowSums(is.na(bad_season_bought_10)) == ncol(bad_season_bought_10)] <- NA
outputs_14$hdds_bad_season_bought <- HDDS_bad_season_bought
outputs_14$hdds_bad_season_bought[is.na(outputs_14$hdds_bad_season)] <- NA
# indicator_search_hdds_bad_season_farm
if (nrow(bad_season_source_14)>1){
bad_season_farm_sourced_14 <- tibble::as_tibble(sapply(bad_season_source_14, function(x) as.numeric(grepl("on-farm", x))))
}
if (nrow(bad_season_source_14)==1){
bad_season_farm_sourced_14 <- tibble::as_tibble_row(sapply(bad_season_source_14, function(x) as.numeric(grepl("on-farm", x))))
}
bad_season_farm_sourced_10 <- collapse_14_groups(bad_season_farm_sourced_14)
bad_season_farm_sourced_10[bad_season_10 == 0 & !is.na(bad_season_10)] <- 0
HDDS_bad_season_farm <- rowSums(bad_season_farm_sourced_10, na.rm = T)
HDDS_bad_season_farm[rowSums(is.na(bad_season_farm_sourced_10)) == ncol(bad_season_farm_sourced_10)] <- NA
HDDS_bad_season_farm[is.na(HDDS_bad_season)] <- NA
outputs_14$hdds_bad_season_farm <- HDDS_bad_season_farm
outputs_14$hdds_bad_season_farm[is.na(outputs_14$hdds_bad_season)] <- NA
}
}
# HDDS for fourteen food groups, looking at the good season
if (all(fourteen_groups_columns$good_season %in% colnames(data))) {
# indicator_search_hdds_good_season
good_season_14 <- switch_units(data[, fourteen_groups_columns$good_season], unit_tibble = unit_conv_tibble, id_vector = rep("x", nrow(data)))
colnames(good_season_14) <- gsub("_good_season", "", colnames(good_season_14))
good_season_10 <- collapse_14_groups(good_season_14)
HDDS_good_season <- rowSums(good_season_10, na.rm = T)
HDDS_good_season[rowSums(is.na(good_season_10)) == ncol(good_season_10)] <- NA
outputs_14$hdds_good_season <- HDDS_good_season
# Looking at the sources during the good season
if (all(fourteen_groups_columns$source_good %in% colnames(data))) {
# indicator_search_hdds_good_season_bought
good_season_source_14 <- data[, fourteen_groups_columns$source_good]
colnames(good_season_source_14) <- gsub("source_good", "", colnames(good_season_14))
if (nrow(good_season_source_14)>1){
good_season_bought_14 <- tibble::as_tibble(sapply(good_season_source_14, function(x) as.numeric(grepl("bought", x))))
}
if (nrow(good_season_source_14)==1){
good_season_bought_14 <- tibble::as_tibble_row(sapply(good_season_source_14, function(x) as.numeric(grepl("bought", x))))
}
good_season_bought_10 <- collapse_14_groups(good_season_bought_14)
good_season_bought_10[good_season_10 == 0 & !is.na(good_season_10)] <- 0
HDDS_good_season_bought <- rowSums(good_season_bought_10, na.rm = T)
HDDS_good_season_bought[rowSums(is.na(good_season_bought_10)) == ncol(good_season_bought_10)] <- NA
outputs_14$hdds_good_season_bought <- HDDS_good_season_bought
outputs_14$hdds_good_season_bought[is.na(outputs_14$hdds_good_season)] <- NA
# indicator_search_hdds_good_season_farm
if (nrow(good_season_source_14)>1){
good_season_farm_sourced_14 <- tibble::as_tibble(sapply(good_season_source_14, function(x) as.numeric(grepl("on-farm", x))))
}
if (nrow(good_season_source_14)==1){
good_season_farm_sourced_14 <- tibble::as_tibble_row(sapply(good_season_source_14, function(x) as.numeric(grepl("on-farm", x))))
}
good_season_farm_sourced_10 <- collapse_14_groups(good_season_farm_sourced_14)
good_season_farm_sourced_10[good_season_10 == 0 & !is.na(good_season_10)] <- 0
HDDS_good_season_farm <- rowSums(good_season_farm_sourced_10, na.rm = T)
HDDS_good_season_farm[rowSums(is.na(good_season_farm_sourced_10)) == ncol(good_season_farm_sourced_10)] <- NA
outputs_14$hdds_good_season_farm <- HDDS_good_season_farm
outputs_14$hdds_good_season_farm[is.na(outputs_14$hdds_good_season)] <- NA
}
}
# HDDS for fourteen food groups, looking at the last month
if (all(fourteen_groups_columns$last_month %in% colnames(data))) {
# indicator_search_hdds_last_month
last_month_14 <- switch_units(data[, fourteen_groups_columns$last_month], unit_tibble = unit_conv_tibble, id_vector = rep("x", nrow(data)))
colnames(last_month_14) <- gsub("_last_month", "", colnames(last_month_14))
last_month_10 <- collapse_14_groups(last_month_14)
HDDS_last_month <- rowSums(last_month_10, na.rm = T)
HDDS_last_month[rowSums(is.na(last_month_10)) == ncol(last_month_10)] <- NA
outputs_14$hdds_last_month <- HDDS_last_month
# Looking at the sources over the last month
if (all(fourteen_groups_columns$source_last_month %in% colnames(data))) {
# indicator_search_hdds_last_month_bought
last_month_source_14 <- data[, fourteen_groups_columns$source_last_month]
colnames(last_month_source_14) <- gsub("source_last_month", "", colnames(last_month_14))
if (nrow(last_month_source_14)>1){
last_month_bought_14 <- tibble::as_tibble(sapply(last_month_source_14, function(x) as.numeric(grepl("bought", x))))
}
if (nrow(last_month_source_14)==1){
last_month_bought_14 <- tibble::as_tibble_row(sapply(last_month_source_14, function(x) as.numeric(grepl("bought", x))))
}
last_month_bought_10 <- collapse_14_groups(last_month_bought_14)
last_month_bought_10[last_month_10 == 0 & !is.na(last_month_10)] <- 0
HDDS_last_month_bought <- rowSums(last_month_bought_10, na.rm = T)
HDDS_last_month_bought[rowSums(is.na(last_month_bought_10)) == ncol(last_month_bought_10)] <- NA
outputs_14$hdds_last_month_bought <- HDDS_last_month_bought
outputs_14$hdds_last_month_bought[is.na(outputs_14$hdds_last_month)] <- NA
# indicator_search_hdds_last_month_farm
if (nrow(last_month_source_14)>1){
last_month_farm_sourced_14 <- tibble::as_tibble(sapply(last_month_source_14, function(x) as.numeric(grepl("on-farm", x))))
}
if (nrow(last_month_source_14)==1){
last_month_farm_sourced_14 <- tibble::as_tibble_row(sapply(last_month_source_14, function(x) as.numeric(grepl("on-farm", x))))
}
last_month_farm_sourced_10 <- collapse_14_groups(last_month_farm_sourced_14)
last_month_farm_sourced_10[last_month_10 == 0 & !is.na(last_month_10)] <- 0
HDDS_last_month_farm <- rowSums(last_month_farm_sourced_10, na.rm = T)
HDDS_last_month_farm[rowSums(is.na(last_month_farm_sourced_10)) == ncol(last_month_farm_sourced_10)] <- NA
outputs_14$hdds_last_month_farm <- HDDS_last_month_farm
outputs_14$hdds_last_month_farm[is.na(outputs_14$hdds_last_month)] <- NA
}
}
if (all(fourteen_groups_columns[["24hr"]] %in% colnames(data))) {
# indicator_search_hdds_last_24hr
last_24hr_14 <- switch_units(data[, fourteen_groups_columns[["24hr"]]], unit_tibble = last_24hr_conv_tibble, id_vector = rep("x", nrow(data)))
colnames(last_24hr_14) <- gsub("_24hr", "", colnames(last_24hr_14))
HDDS_last_24hr <- rowSums(last_24hr_14, na.rm = T)
HDDS_last_24hr[rowSums(is.na(last_24hr_14)) == ncol(last_24hr_14)] <- NA
outputs_14$hdds_last_24hr <- HDDS_last_24hr
}
if (all(ten_groups_columns$good_season %in% colnames(data))) {
# indicator_search_hdds_good_season
good_season_10 <- switch_units(data[, ten_groups_columns$good_season], unit_tibble = unit_conv_tibble, id_vector = rep("x", nrow(data)))
colnames(good_season_10) <- gsub("_good_season", "", colnames(good_season_10))
HDDS_good_season <- rowSums(good_season_10, na.rm = T)
HDDS_good_season[rowSums(is.na(good_season_10)) == ncol(good_season_10)] <- NA
outputs_10$hdds_good_season <- HDDS_good_season
if (all(ten_groups_columns$source_good %in% colnames(data))) {
# indicator_search_hdds_good_season_bought
good_season_source_10 <- data[, ten_groups_columns$source_good]
colnames(good_season_source_10) <- gsub("source_good", "", colnames(good_season_10))
if (nrow(good_season_source_10)>1){
good_season_bought_10 <- tibble::as_tibble(sapply(good_season_source_10, function(x) as.numeric(grepl("bought", x))))
}
if (nrow(good_season_source_10)==1){
good_season_bought_10 <- tibble::as_tibble_row(sapply(good_season_source_10, function(x) as.numeric(grepl("bought", x))))
}
good_season_bought_10[good_season_10 == 0 & !is.na(good_season_10)] <- 0
HDDS_good_season_bought <- rowSums(good_season_bought_10, na.rm = T)
HDDS_good_season_bought[rowSums(is.na(good_season_bought_10)) == ncol(good_season_bought_10)] <- NA
outputs_10$hdds_good_season_bought <- HDDS_good_season_bought
outputs_10$hdds_good_season_bought[is.na(outputs_10$hdds_good_season)] <- NA
# indicator_search_hdds_good_season_farm
if (nrow(good_season_source_10)>1){
good_season_farm_sourced_10 <- tibble::as_tibble(sapply(good_season_source_10, function(x) as.numeric(grepl("on-farm", x))))
}
if (nrow(good_season_source_10)==1){
good_season_farm_sourced_10 <- tibble::as_tibble_row(sapply(good_season_source_10, function(x) as.numeric(grepl("on-farm", x))))
}
good_season_farm_sourced_10[good_season_10 == 0 & !is.na(good_season_10)] <- 0
HDDS_good_season_farm <- rowSums(good_season_farm_sourced_10, na.rm = T)
HDDS_good_season_farm[rowSums(is.na(good_season_farm_sourced_10)) == ncol(good_season_farm_sourced_10)] <- NA
outputs_10$hdds_good_season_farm <- HDDS_good_season_farm
outputs_10$hdds_good_season_farm[is.na(outputs_10$hdds_good_season)] <- NA
}
}
if (all(ten_groups_columns$bad_season %in% colnames(data))) {
# indicator_search_hdds_bad_season
bad_season_10 <- switch_units(data[, ten_groups_columns$bad_season], unit_tibble = unit_conv_tibble, id_vector = rep("x", nrow(data)))
colnames(bad_season_10) <- gsub("_bad_season", "", colnames(bad_season_10))
HDDS_bad_season <- rowSums(bad_season_10, na.rm = T)
HDDS_bad_season[rowSums(is.na(bad_season_10)) == ncol(bad_season_10)] <- NA
outputs_10$hdds_bad_season <- HDDS_bad_season
if (all(ten_groups_columns$source_bad %in% colnames(data))) {
# indicator_search_hdds_bad_season_bought
bad_season_source_10 <- data[, ten_groups_columns$source_bad]
colnames(bad_season_source_10) <- gsub("source_bad", "", colnames(bad_season_10))
if (nrow(bad_season_source_10)>1){
bad_season_bought_10 <- tibble::as_tibble(sapply(bad_season_source_10, function(x) as.numeric(grepl("bought", x))))
}
if (nrow(bad_season_source_10)==1){
bad_season_bought_10 <- tibble::as_tibble_row(sapply(bad_season_source_10, function(x) as.numeric(grepl("bought", x))))
}
bad_season_bought_10[bad_season_10 == 0 & !is.na(bad_season_10)] <- 0
HDDS_bad_season_bought <- rowSums(bad_season_bought_10, na.rm = T)
HDDS_bad_season_bought[rowSums(is.na(bad_season_bought_10)) == ncol(bad_season_bought_10)] <- NA
outputs_10$hdds_bad_season_bought <- HDDS_bad_season_bought
outputs_10$hdds_bad_season_bought[is.na(outputs_10$hdds_bad_season)] <- NA
# indicator_search_hdds_bad_season_farm
if (nrow(bad_season_source_10)>1){
bad_season_farm_sourced_10 <- tibble::as_tibble(sapply(bad_season_source_10, function(x) as.numeric(grepl("on-farm", x))))
}
if (nrow(bad_season_source_10)==1){
bad_season_farm_sourced_10 <- tibble::as_tibble_row(sapply(bad_season_source_10, function(x) as.numeric(grepl("on-farm", x))))
}
bad_season_farm_sourced_10[bad_season_10 == 0 & !is.na(bad_season_10)] <- 0
HDDS_bad_season_farm <- rowSums(bad_season_farm_sourced_10, na.rm = T)
HDDS_bad_season_farm[rowSums(is.na(bad_season_farm_sourced_10)) == ncol(bad_season_farm_sourced_10)] <- NA
outputs_10$hdds_bad_season_farm <- HDDS_bad_season_farm
outputs_10$hdds_bad_season_farm[is.na(outputs_10$hdds_bad_season)] <- NA
}
}
if (all(ten_groups_columns$good_season %in% colnames(data))) {
good_season_10 <- switch_units(data[, ten_groups_columns$good_season], unit_tibble = unit_conv_tibble, id_vector = rep("x", nrow(data)))
colnames(good_season_10) <- gsub("_good_season", "", colnames(good_season_10))
HDDS_good_season <- rowSums(good_season_10, na.rm = T)
HDDS_good_season[rowSums(is.na(good_season_10)) == ncol(good_season_10)] <- NA
outputs_10$hdds_good_season <- HDDS_good_season
if (all(ten_groups_columns$source_good %in% colnames(data))) {
good_season_source_10 <- data[, ten_groups_columns$source_good]
colnames(good_season_source_10) <- gsub("source_good", "", colnames(good_season_10))
if (nrow(good_season_source_10)>1){
good_season_bought_10 <- tibble::as_tibble(sapply(good_season_source_10, function(x) as.numeric(grepl("bought", x))))
}
if (nrow(good_season_source_10)==1){
good_season_bought_10 <- tibble::as_tibble_row(sapply(good_season_source_10, function(x) as.numeric(grepl("bought", x))))
}
good_season_bought_10[good_season_10 == 0 & !is.na(good_season_10)] <- 0
HDDS_good_season_bought <- rowSums(good_season_bought_10, na.rm = T)
HDDS_good_season_bought[rowSums(is.na(good_season_bought_10)) == ncol(good_season_bought_10)] <- NA
outputs_10$hdds_good_season_bought <- HDDS_good_season_bought
outputs_10$hdds_good_season_bought[is.na(outputs_10$hdds_good_season)] <- NA
if (nrow(good_season_source_10)>1){
good_season_farm_sourced_10 <- tibble::as_tibble(sapply(good_season_source_10, function(x) as.numeric(grepl("on-farm", x))))
}
if (nrow(good_season_source_10)==1){
good_season_farm_sourced_10 <- tibble::as_tibble_row(sapply(good_season_source_10, function(x) as.numeric(grepl("on-farm", x))))
}
good_season_farm_sourced_10[good_season_10 == 0 & !is.na(good_season_10)] <- 0
HDDS_good_season_farm <- rowSums(good_season_farm_sourced_10, na.rm = T)
HDDS_good_season_farm[rowSums(is.na(good_season_farm_sourced_10)) == ncol(good_season_farm_sourced_10)] <- NA
outputs_10$hdds_good_season_farm <- HDDS_good_season_farm
outputs_10$hdds_good_season_farm[is.na(outputs_10$hdds_good_season)] <- NA
}
}
if (all(ten_groups_columns$last_month %in% colnames(data))) {
# indicator_search_hdds_last_month
last_month_10 <- switch_units(data[, ten_groups_columns$last_month], unit_tibble = unit_conv_tibble, id_vector = rep("x", nrow(data)))
colnames(last_month_10) <- gsub("_last_month", "", colnames(last_month_10))
HDDS_last_month <- rowSums(last_month_10, na.rm = T)
HDDS_last_month[rowSums(is.na(last_month_10)) == ncol(last_month_10)] <- NA
outputs_10$hdds_last_month <- HDDS_last_month
if (all(ten_groups_columns$source_last_month %in% colnames(data))) {
# indicator_search_hdds_last_month_bought
last_month_source_10 <- data[, ten_groups_columns$source_last_month]
colnames(last_month_source_10) <- gsub("source_last_month", "", colnames(last_month_source_10))
if (nrow(last_month_source_10)>1){
last_month_bought_10 <- tibble::as_tibble(sapply(last_month_source_10, function(x) as.numeric(grepl("bought", x))))
}
if (nrow(last_month_source_10)==1){
last_month_bought_10 <- tibble::as_tibble_row(sapply(last_month_source_10, function(x) as.numeric(grepl("bought", x))))
}
last_month_bought_10[last_month_10 == 0 & !is.na(last_month_10)] <- 0
HDDS_last_month_bought <- rowSums(last_month_bought_10, na.rm = T)
HDDS_last_month_bought[rowSums(is.na(last_month_bought_10)) == ncol(last_month_bought_10)] <- NA
outputs_10$hdds_last_month_bought <- HDDS_last_month_bought
outputs_10$hdds_last_month_bought[is.na(outputs_10$hdds_last_month)] <- NA
# indicator_search_hdds_last_month_farm
if (nrow(last_month_source_10)>1){
last_month_farm_sourced_10 <- tibble::as_tibble(sapply(last_month_source_10, function(x) as.numeric(grepl("on-farm", x))))
}
if (nrow(last_month_source_10)==1){
last_month_farm_sourced_10 <- tibble::as_tibble_row(sapply(last_month_source_10, function(x) as.numeric(grepl("on-farm", x))))
}
last_month_farm_sourced_10[last_month_10 == 0 & !is.na(last_month_10)] <- 0
HDDS_last_month_farm <- rowSums(last_month_farm_sourced_10, na.rm = T)
HDDS_last_month_farm[rowSums(is.na(last_month_farm_sourced_10)) == ncol(last_month_farm_sourced_10)] <- NA
outputs_10$hdds_last_month_farm <- HDDS_last_month_farm
outputs_10$hdds_last_month_farm[is.na(outputs_10$hdds_last_month)] <- NA
}
}
if (all(ten_groups_columns[["24hr"]] %in% colnames(data))) {
# indicator_search_hdds_last_24hr
last_24hr_10 <- switch_units(data[, ten_groups_columns[["24hr"]]], unit_tibble = last_24hr_conv_tibble, id_vector = rep("x", nrow(data)))
colnames(last_24hr_10) <- gsub("_24hr", "", colnames(last_24hr_10))
HDDS_last_24hr <- rowSums(last_24hr_10, na.rm = T)
HDDS_last_24hr[rowSums(is.na(last_24hr_10)) == ncol(last_24hr_10)] <- NA
outputs_10$hdds_last_24hr <- HDDS_last_24hr
}
if (length(names(outputs_10)) > 0) {
results <- outputs_10
}
if (length(names(outputs_14)) > 0) {
results <- outputs_14
}
if (length(names(outputs_10)) > 0 &
length(names(outputs_14)) > 0){
if (all(names(outputs_10) %in% names(outputs_14))){
results <- sapply(names(outputs_10), function(x){
results <- pmax(outputs_10[[x]], outputs_14[[x]], na.rm=T)
na_rows <- is.na(outputs_10[[x]])&is.na(outputs_14[[x]])
results[na_rows] <- NA
results
}, simplify=F)
}
}
if (length(outputs_10)==0 &
length(outputs_14)==0){
results <- tibble::as_tibble(c())
}
results <- tibble::as_tibble(results)
return(results)
}
collapse_14_groups <- function(hdds_data) {
na_rows <- rowSums(is.na(hdds_data))==ncol(hdds_data)
hdds_data$grainsrootstubers <- rowSums(data.frame(as.numeric(hdds_data$grains), as.numeric(hdds_data$roots_tubers)), na.rm = T)
hdds_data$grainsrootstubers[na_rows] <- NA
hdds_data$grainsrootstubers <- as.numeric(gsub("2", 1, as.character(hdds_data$grainsrootstubers)))
hdds_data$grains <- NULL
hdds_data$roots_tubers <- NULL
hdds_data$legumes <- hdds_data$pulses
hdds_data$pulses <- NULL
# hdds_data$nuts_seeds <- hdds_data$nuts_seeds
# hdds_data$nuts_seeds <- NULL
hdds_data$veg_leafy <- hdds_data$green_veg
hdds_data$green_veg <- NULL
hdds_data$vita_veg_fruit <- rowSums(data.frame(as.numeric(hdds_data$vita_veg), as.numeric(hdds_data$vita_fruits)), na.rm = T)
hdds_data$vita_veg_fruit[na_rows] <- NA
hdds_data$vita_veg_fruit <- as.numeric(gsub("2", 1, as.character(hdds_data$vita_veg_fruit)))
hdds_data$vita_veg <- NULL
hdds_data$vita_fruits <- NULL
hdds_data$vegetables <- hdds_data$other_veg
hdds_data$other_veg <- NULL
hdds_data$fruits <- hdds_data$other_fruits
hdds_data$other_fruits <- NULL
hdds_data$meat <- rowSums(data.frame(as.numeric(hdds_data$meat_poultry), as.numeric(hdds_data$organ_meat), as.numeric(hdds_data$fish_seafood)), na.rm = T)
hdds_data$meat[na_rows] <- NA
hdds_data$meat <- as.numeric(gsub("2", 1, as.character(hdds_data$meat)))
hdds_data$meat <- as.numeric(gsub("3", 1, as.character(hdds_data$meat)))
hdds_data$meat_poultry <- NULL
hdds_data$organ_meat <- NULL
hdds_data$fish_seafood <- NULL
# hdds_data$eggs<- hdds_data$eggs
# hdds_data$eggs<-NULL
hdds_data$milk_dairy <- hdds_data$milk
hdds_data$milk <- NULL
return(hdds_data)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.