Description Usage Arguments Details Value
Identify clusters of cells by a shared nearest neighbor (SNN) modularity optimization based clustering algorithm. First calculate k-nearest neighbors and construct the SNN graph. Then optimize the modularity function to determine clusters. For a full description of the algorithms, see Waltman and van Eck (2013) The European Physical Journal B. Thanks to Nigel Delaney (evolvedmicrobe@github) for the rewrite of the Java modularity optimizer code in Rcpp!
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 | FindClusters(object, ...)
## Default S3 method:
FindClusters(
  object,
  modularity.fxn = 1,
  initial.membership = NULL,
  weights = NULL,
  node.sizes = NULL,
  resolution = 0.8,
  algorithm = 1,
  n.start = 10,
  n.iter = 10,
  random.seed = 1,
  group.singletons = TRUE,
  temp.file.location = NULL,
  edge.file.name = NULL,
  verbose = TRUE,
  ...
)
## S3 method for class 'Seurat'
FindClusters(
  object,
  graph.name = NULL,
  modularity.fxn = 1,
  initial.membership = NULL,
  weights = NULL,
  node.sizes = NULL,
  resolution = 0.8,
  algorithm = 1,
  n.start = 10,
  n.iter = 10,
  random.seed = 1,
  group.singletons = TRUE,
  temp.file.location = NULL,
  edge.file.name = NULL,
  verbose = TRUE,
  ...
)
 | 
| object | An object | 
| ... | Arguments passed to other methods | 
| modularity.fxn | Modularity function (1 = standard; 2 = alternative). | 
| initial.membership, weights, node.sizes | Parameters to pass to the Python leidenalg function. | 
| resolution | Value of the resolution parameter, use a value above (below) 1.0 if you want to obtain a larger (smaller) number of communities. | 
| algorithm | Algorithm for modularity optimization (1 = original Louvain algorithm; 2 = Louvain algorithm with multilevel refinement; 3 = SLM algorithm; 4 = Leiden algorithm). Leiden requires the leidenalg python. | 
| n.start | Number of random starts. | 
| n.iter | Maximal number of iterations per random start. | 
| random.seed | Seed of the random number generator. | 
| group.singletons | Group singletons into nearest cluster. If FALSE, assign all singletons to a "singleton" group | 
| temp.file.location | Directory where intermediate files will be written. Specify the ABSOLUTE path. | 
| edge.file.name | Edge file to use as input for modularity optimizer jar. | 
| verbose | Print output | 
| graph.name | Name of graph to use for the clustering algorithm | 
To run Leiden algorithm, you must first install the leidenalg python package (e.g. via pip install leidenalg), see Traag et al (2018).
Returns a Seurat object where the idents have been updated with new cluster info; latest clustering results will be stored in object metadata under 'seurat_clusters'. Note that 'seurat_clusters' will be overwritten everytime FindClusters is run
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.