AddModuleScore: Calculate module scores for feature expression programs in...

Description Usage Arguments Value References Examples

View source: R/utilities.R

Description

Calculate the average expression levels of each program (cluster) on single cell level, subtracted by the aggregated expression of control feature sets. All analyzed features are binned based on averaged expression, and the control features are randomly selected from each bin.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
AddModuleScore(
  object,
  features,
  pool = NULL,
  nbin = 24,
  ctrl = 100,
  k = FALSE,
  assay = NULL,
  name = "Cluster",
  seed = 1
)

Arguments

object

Seurat object

features

Feature expression programs in list

pool

List of features to check expression levels agains, defaults to rownames(x = object)

nbin

Number of bins of aggregate expression levels for all analyzed features

ctrl

Number of control features selected from the same bin per analyzed feature

k

Use feature clusters returned from DoKMeans

assay

Name of assay to use

name

Name for the expression programs

seed

Set a random seed. If NULL, seed is not set.

Value

Returns a Seurat object with module scores added to object meta data

References

Tirosh et al, Science (2016)

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
## Not run: 
cd_features <- list(c(
  'CD79B',
  'CD79A',
  'CD19',
  'CD180',
  'CD200',
  'CD3D',
  'CD2',
  'CD3E',
  'CD7',
  'CD8A',
  'CD14',
  'CD1C',
  'CD68',
  'CD9',
  'CD247'
))
pbmc_small <- AddModuleScore(
  object = pbmc_small,
  features = cd_features,
  ctrl = 5,
  name = 'CD_Features'
)
head(x = pbmc_small[])

## End(Not run)

lambdamoses/SeuratBasics documentation built on May 6, 2020, 9:32 a.m.