R/na_values.R

Defines functions user_na_to_tagged_na.data.frame user_na_to_tagged_na.haven_labelled_spss user_na_to_tagged_na.default user_na_to_tagged_na user_na_to_na.data.frame user_na_to_na.haven_labelled_spss user_na_to_na.default user_na_to_na is_regular_na is_user_na test_if_user_na set_na_range set_na_values `na_range<-.data.frame` `na_range<-.haven_labelled` `na_range<-.factor` `na_range<-.default` `na_range<-` na_range.data.frame na_range.haven_labelled_spss na_range.default na_range `na_values<-.data.frame` `na_values<-.haven_labelled` `na_values<-.factor` `na_values<-.default` `na_values<-` na_values.data.frame na_values.haven_labelled_spss na_values.default na_values

Documented in is_regular_na is_user_na na_range na_values set_na_range set_na_values user_na_to_na user_na_to_tagged_na

#' Get / Set SPSS missing values
#'
#' @param x A vector (or a data frame).
#' @param value A vector of values that should also be considered as missing
#' (for `na_values`) or a numeric vector of length two giving the (inclusive)
#' extents of the range (for `na_values`, use `-Inf` and `Inf` if you
#' want the range to be open ended).
#' @details
#' See [haven::labelled_spss()] for a presentation of SPSS's user defined
#' missing values.
#'
#' Note that [base::is.na()] will return `TRUE` for user defined missing values.
#' It will also return `TRUE` for regular `NA` values. If you want to test if a
#' specific value is a user NA but not a regular `NA`, use `is_user_na()`.
#' If you want to test if a value is a regular `NA` but not a user NA, not a
#' tagged NA, use `is_regular_na()`.
#'
#' You can use [user_na_to_na()] to convert user defined missing values to
#' regular `NA`. Note that any value label attached to a user defined missing
#' value will be lost.
#' [user_na_to_regular_na()] is a synonym of [user_na_to_na()].
#'
#' The method [user_na_to_tagged_na()] will convert user defined missing values
#' into [haven::tagged_na()], preserving value labels. Please note that
#' [haven::tagged_na()] are defined only for double vectors. Therefore, integer
#' `haven_labelled_spss` vectors will be converted into double `haven_labelled`
#' vectors; and [user_na_to_tagged_na()] cannot be applied to a character
#' `haven_labelled_spss` vector.
#'
#' [tagged_na_to_user_na()] is the opposite of [user_na_to_tagged_na()] and
#' convert tagged `NA` into user defined missing values.
#'
#' @return
#'   `na_values()` will return a vector of values that should also be
#'   considered as missing.
#'   `na_range()` will return a numeric vector of length two giving the
#'   (inclusive) extents of the range.
#' @seealso [haven::labelled_spss()], [user_na_to_na()]
#' @examples
#' v <- labelled(
#'   c(1, 2, 2, 2, 3, 9, 1, 3, 2, NA),
#'   c(yes = 1, no = 3, "don't know" = 9)
#' )
#' v
#' na_values(v) <- 9
#' na_values(v)
#' v
#'
#' is.na(v) # TRUE for the 6th and 10th values
#' is_user_na(v) # TRUE only for the 6th value
#'
#' user_na_to_na(v)
#' na_values(v) <- NULL
#' v
#' na_range(v) <- c(5, Inf)
#' na_range(v)
#' v
#' user_na_to_na(v)
#' user_na_to_tagged_na(v)
#'
#' # it is not recommended to mix user NAs and tagged NAs
#' x <- c(NA, 9, tagged_na("a"))
#' na_values(x) <- 9
#' x
#' is.na(x)
#' is_user_na(x)
#' is_tagged_na(x)
#' is_regular_na(x)
#'
#' @export
na_values <- function(x) {
  UseMethod("na_values")
}

#' @export
na_values.default <- function(x) {
  # return nothing
  NULL
}

#' @export
na_values.haven_labelled_spss <- function(x) {
  attr(x, "na_values", exact = TRUE)
}

#' @export
na_values.data.frame <- function(x) {
  lapply(x, na_values)
}

#' @rdname na_values
#' @export
`na_values<-` <- function(x, value) {
  UseMethod("na_values<-")
}

#' @export
`na_values<-.default` <- function(x, value) {
  if (!is.null(value)) {
    x <- labelled_spss(
      x,
      val_labels(x),
      na_values = value,
      na_range = attr(x, "na_range"),
      label = var_label(x)
    )
  }
  # else do nothing
  x
}

#' @export
`na_values<-.factor` <- function(x, value) {
  if (!is.null(value)) {
    stop("`na_values()` cannot be applied to factors.")
  }
  x %>% remove_attributes("na_values")
}

#' @export
`na_values<-.haven_labelled` <- function(x, value) {
  if (is.null(value)) {
    attr(x, "na_values") <- NULL
    if (is.null(attr(x, "na_range"))) {
      x <- labelled(x, val_labels(x), label = var_label(x))
    }
  } else {
    x <- labelled_spss(
      x,
      val_labels(x),
      na_values = value,
      na_range = attr(x, "na_range"),
      label = var_label(x)
    )
  }
  x
}

#' @export
`na_values<-.data.frame` <- function(x, value) {
  if (!is.list(value)) {
    temp <- as.list(rep(1, ncol(x)))
    names(temp) <- names(x)
    value <- lapply(temp, function(x) {
      x <- value
    })
  }

  if (!all(names(value) %in% names(x))) {
    missing_names <- stringr::str_c(
      setdiff(names(value), names(x)),
      collapse = ", "
    )
    stop("some variables not found in x:", missing_names)
  }

  for (var in names(value)) {
    if (!is.null(value[[var]])) {
      if (mode(x[[var]]) != mode(value[[var]])) {
        stop("`x` and `value` must be same type",
          call. = FALSE,
          domain = "R-labelled"
        )
      }
      if (typeof(x[[var]]) != typeof(value[[var]])) {
        mode(value[[var]]) <- typeof(x[[var]])
      }
    }
  }

  for (var in names(value)) na_values(x[[var]]) <- value[[var]]

  x
}


#' @rdname na_values
#' @export
na_range <- function(x) {
  UseMethod("na_range")
}

#' @export
na_range.default <- function(x) {
  # return nothing
  NULL
}

#' @export
na_range.haven_labelled_spss <- function(x) {
  attr(x, "na_range", exact = TRUE)
}

#' @export
na_range.data.frame <- function(x) {
  lapply(x, na_range)
}

#' @rdname na_values
#' @export
`na_range<-` <- function(x, value) {
  UseMethod("na_range<-")
}

#' @export
`na_range<-.default` <- function(x, value) {
  if (!is.null(value)) {
    x <- labelled_spss(
      x,
      val_labels(x),
      na_values = attr(x, "na_values"),
      na_range = value,
      label = var_label(x)
    )
  }
  # else do nothing
  x
}

#' @export
`na_range<-.factor` <- function(x, value) {
  if (!is.null(value)) {
    stop("`na_range()` cannot be applied to factors.")
  }
  x %>% remove_attributes("na_range")
}

#' @export
`na_range<-.haven_labelled` <- function(x, value) {
  if (is.null(value)) {
    attr(x, "na_range") <- NULL
    if (is.null(attr(x, "na_values"))) {
      x <- labelled(x, val_labels(x), label = var_label(x))
    }
  } else {
    x <- labelled_spss(
      x,
      val_labels(x),
      na_values = attr(x, "na_values"),
      na_range = value,
      label = var_label(x)
    )
  }
  x
}

#' @export
`na_range<-.data.frame` <- function(x, value) {
  if (!is.list(value)) {
    temp <- as.list(rep(1, ncol(x)))
    names(temp) <- names(x)
    value <- lapply(temp, function(x) {
      x <- value
    })
  }

  if (!all(names(value) %in% names(x))) {
    missing_names <- stringr::str_c(
      setdiff(names(value), names(x)),
      collapse = ", "
    )
    stop("some variables not found in x:", missing_names)
  }

  for (var in names(value)) {
    if (!is.null(value[[var]])) {
      if (mode(x[[var]]) != mode(value[[var]])) {
        stop("`x` and `value` must be same type",
          call. = FALSE,
          domain = "R-labelled"
        )
      }
      if (typeof(x[[var]]) != typeof(value[[var]])) {
        mode(value[[var]]) <- typeof(x[[var]])
      }
    }
  }

  for (var in names(value)) na_range(x[[var]]) <- value[[var]]

  x
}

#' @rdname na_values
#' @export
get_na_values <- na_values

#' @rdname na_values
#' @export
get_na_range <- na_range

#' @rdname na_values
#' @param .data a data frame or a vector
#' @param ... name-value pairs of missing values (see examples)
#' @param .values missing values to be applied to the data.frame,
#'   using the same syntax as `value` in `na_values(df) <- value` or
#'   `na_range(df) <- value`.
#' @param .strict should an error be returned if some labels
#'   doesn't correspond to a column of `x`?
#' @note
#'   `get_na_values()` is identical to `na_values()` and `get_na_range()`
#'   to `na_range()`.
#'
#'   `set_na_values()` and `set_na_range()` could be used with \pkg{dplyr}
#'   syntax.
#' @return
#'  `set_na_values()` and `set_na_range()` will return an updated
#'  copy of `.data`.
#' @examples
#' if (require(dplyr)) {
#'   # setting value label and user NAs
#'   df <- tibble(s1 = c("M", "M", "F", "F"), s2 = c(1, 1, 2, 9)) %>%
#'     set_value_labels(s2 = c(yes = 1, no = 2)) %>%
#'     set_na_values(s2 = 9)
#'   na_values(df)
#'
#'   # removing missing values
#'   df <- df %>% set_na_values(s2 = NULL)
#'   df$s2
#'
#'   # example with a vector
#'   v <- 1:10
#'   v <- v %>% set_na_values(5, 6, 7)
#'   v
#'   v %>% set_na_range(8, 10)
#'   v %>% set_na_range(.values = c(9, 10))
#'   v %>% set_na_values(NULL)
#' }
#' @export
set_na_values <- function(.data, ..., .values = NA, .strict = TRUE) {
  if (!is.data.frame(.data) && !is.atomic(.data)) {
    stop(".data should be a data.frame or a vector")
  }

  # vector case
  if (is.atomic(.data)) {
    if (!identical(.values, NA)) {
      na_values(.data) <- .values
    } else {
      na_values(.data) <- unname(unlist(rlang::dots_list(...)))
    }
    return(.data)
  }

  # data.frame case
  if (!identical(.values, NA)) {
    if (!.strict) {
      .values <- .values[intersect(names(.values), names(.data))]
    }
    na_values(.data) <- .values
  }
  values <- rlang::dots_list(...)
  if (.strict && !all(names(values) %in% names(.data))) {
    missing_names <- stringr::str_c(
      setdiff(names(values), names(.data)),
      collapse = ", "
    )
    stop("some variables not found in .data: ", missing_names)
  }

  for (v in intersect(names(values), names(.data))) {
    na_values(.data[[v]]) <- values[[v]]
  }

  .data
}

#' @rdname na_values
#' @export
set_na_range <- function(.data, ..., .values = NA, .strict = TRUE) {
  if (!is.data.frame(.data) && !is.atomic(.data)) {
    stop(".data should be a data.frame or a vector")
  }

  # vector case
  if (is.atomic(.data)) {
    if (!identical(.values, NA)) {
      na_range(.data) <- .values
    } else {
      na_range(.data) <- unname(unlist(rlang::dots_list(...)))
    }
    return(.data)
  }

  # data.frame case
  if (!identical(.values, NA)) {
    if (!.strict) {
      .values <- .values[intersect(names(.values), names(.data))]
    }
    na_range(.data) <- .values
  }
  values <- rlang::dots_list(...)
  if (.strict && !all(names(values) %in% names(.data))) {
    stop("some variables not found in .data")
  }

  for (v in intersect(names(values), names(.data))) {
    na_range(.data[[v]]) <- values[[v]]
  }

  .data
}

# internal function to test if a value is user_na
test_if_user_na <- function(val, na_values = NULL, na_range = NULL) {
  if (inherits(val, "haven_labelled")) {
    val <- unclass(val)
  }
  miss <- rep.int(FALSE, length(val))
  if (!is.null(na_values)) {
    miss <- miss | val %in% na_values
  }
  if (!is.null(na_range) && is.numeric(val)) {
    miss <- miss | (val >= na_range[1] & val <= na_range[2] & !is.na(val))
  }
  miss
}

#' @rdname na_values
#' @export
is_user_na <- function(x) {
  test_if_user_na(x, na_values(x), na_range(x))
}

#' @rdname na_values
#' @export
is_regular_na <- function(x) {
  is.na(x) & !is_user_na(x) & !is_tagged_na(x)
}

#' @rdname na_values
#' @export
user_na_to_na <- function(x) {
  UseMethod("user_na_to_na")
}

#' @rdname na_values
#' @export
user_na_to_regular_na <- user_na_to_na

#' @export
user_na_to_na.default <- function(x) {
  # do nothing
  x
}

#' @export
user_na_to_na.haven_labelled_spss <- function(x) {
  remove_user_na(x, user_na_to_na = TRUE)
}

#' @export
user_na_to_na.data.frame <- function(x) {
  x[] <- lapply(x, user_na_to_na)
  x
}



#' @rdname na_values
#' @export
user_na_to_tagged_na <- function(x) {
  UseMethod("user_na_to_tagged_na")
}

#' @export
user_na_to_tagged_na.default <- function(x) {
  # do nothing
  x
}

#' @export
user_na_to_tagged_na.haven_labelled_spss <- function(x) {
  remove_user_na(x, user_na_to_tagged_na = TRUE)
}

#' @export
user_na_to_tagged_na.data.frame <- function(x) {
  x[] <- lapply(x, user_na_to_tagged_na)
  x
}
larmarange/labelled documentation built on Oct. 11, 2024, 6:25 p.m.