R/stochasticmodel_outadjust_pandemictravel.R

#' This function gives a stochastic realization for n countries with a given regulated
#' strategy and quarantine duration required by the destination countries
#' for each travel out country depends on the situation of the travel out country
#' It also kepps track the number of imported active confirmed each day during the pandemic and traveler status before and after done quarantine.
#' @param thetamatrix is a matrix of parameters, parameters of each country is on 1 row
#' @param inp is a list include durationtravel : durationtravel (days),
#'  durationquarantine_adjustedout : number of days people travel in have to quarantine based on each country policy,
#' travelregulated: a list of travel allowed from 1 country to another during the duration,
#' initialmatrix is a matrix of initial compartments of countries, each country is on 1 row, and
#' quarantinerate is the rate people follow quarantine
#'
#' @return  The a stochastic realization of n countries with travel data regulated, also returns
#' travelers status before and after quarantine, and active confirm update during the quarantine time

#' @examples
#' \dontrun{
#' library(CONETTravel)

#' ######function generating parameters with R0 in a given range
#' thetagenerating = function(lowerbound, upperbound){
#' tmp2 = 1 # need for kick off
#' while(tmp2 >0){
#'    theta = c( alpha0 = 0,alpha = runif(1,0,1),beta = runif(1,0,.25), delta=runif(1,0,.25),
#'            eta=1, gamma=runif(1,0,1) )
#' tmp1 = theta[2]/(theta[3] + theta[6])
#'  tmp2 = (tmp1 - lowerbound)*(tmp1 - upperbound)
#' }
#' return(theta)
#' }
#' ############ function generate theta matrix
#' thetafunction <- function(numbercountries){

#' thetamat = matrix(0, nrow=numbercountries, ncol=6)
#' for(i in 1:numbercountries){
#'   thetamat[i,] = thetagenerating(0.47,6.47) # R0 belongs to .47, 6.47
#' }
#' return(thetamat)
#' }

#' ###########initial matrix function
#' initialmatrix_func =  function(numbercountries){
#'  initialmatrix = matrix(0, numbercountries, 6)
#' for (country in 1:numbercountries){
#'  P = round(runif(1, 50000, 20000000000), digits=0)
#' I = round(runif(1, 0, 2000), digits=0)
#'  S = P - I
#'   initialmatrix[country,] = c(S, I, 0, 0,0,0)
#' }
#'  return(initialmatrix)
#'}
#'############function generate travel data
#'traveldata_func = function(P, numbercountries, travelrate, durationtravel){
#'  traveldata = matrix(0, nrow = durationtravel, ncol = numbercountries)
#' for( day in 1:durationtravel){
#'  for (country in 1:numbercountries){
#'    Totaltravel = P[country]*travelrate
#'      SdTotaltravel = Totaltravel*.05
#'      traveldata[day,country] = round(rnorm(1, Totaltravel, SdTotaltravel), digits=0)
#'    }
#'  }
#'  return(traveldata)
#' }
#' #############
#' numbercountries = 3 # choose the number of countries
#' initial_corona =  initialmatrix_func(numbercountries)
#' P = rowSums(initial_corona)
#' travelrate = 40/(365*328) #a given travel rate each day
#' durationtravel = 84 # number of days travel
#generate total travel out data for each country

#' travelout_data = traveldata_func(P, numbercountries, travelrate, durationtravel)
#' #generate theta matrix for each countries

#' thetamatrix = thetafunction(numbercountries)

#' ratein = 1 # policy that allows full rate of travel in
#' traveloutDivideRegulated = totaltravelout_samerate_regulated(travelout_data, ratein, P)
#' inp = list(durationtravel = durationtravel, travelregulated = traveloutDivideRegulated,
#'           initialmatrix = initial_corona, quarantinerate = 1, durationquarantine_adjustedout = rep(14,numbercountries))

#' stochasticmodel_outadjust_pandemictravel(thetamatrix, inp)


#' }

#' @export




stochasticmodel_outadjust_pandemictravel = function (thetamatrix, inp)
{

  harzard1 = function(x, theta) {
    h1 = (theta[1] + theta[2]) * x[1] * x[2]/sum(x)
    names(h1) = c("hazard1")
    return(h1)
  }
  harzard2 = function(x, theta) {
    h2 = theta[6] * x[2]
    names(h2) = c("hazard2")
    return(h2)
  }
  harzard3 = function(x, theta) {
    h3 = theta[3] * x[3]
    names(h3) = c("hazard3")
    return(h3)
  }
  harzard4 = function(x, theta) {
    h4 = theta[4] * x[3]
    names(h4) = c("hazard4")
    return(h4)
  }
  harzard5 = function(x, theta) {
    h5 = theta[5] * theta[3] * x[2]
    names(h5) = c("hazard5")
    return(h5)
  }
  numbercountries = nrow(inp$initialmatrix)
  compartments = ncol(inp$initialmatrix)
  status_matrix = matrix(0, nrow = inp$durationtravel, ncol = numbercountries *
                           compartments)
  f_in = matrix(0, nrow = inp$durationtravel, ncol = numbercountries *
                  compartments)
  f_out = matrix(0, nrow = inp$durationtravel, ncol = numbercountries *
                   compartments)
  totalduration = inp$durationtravel + max(inp$durationquarantine_adjustedout) + inp$durationtravel -1
  f_out_donequarantine_list = list()
  f_out_prequarantine_list = list()

  f_out_activequarantine_addlist = list()
  f_out_activenoquarantine_addlist = list()

  for (outdone in 1:numbercountries) {
    f_out_donequarantine_list[[outdone]] = matrix(0, nrow = totalduration,
                                                  ncol = numbercountries * compartments)

    f_out_prequarantine_list[[outdone]] = matrix(0, nrow = totalduration,
                                                 ncol = numbercountries * compartments)

    f_out_activequarantine_addlist[[outdone]] = matrix(0, nrow = totalduration,
                                                       ncol = numbercountries * compartments)

    f_out_activenoquarantine_addlist[[outdone]] = matrix(0, nrow = totalduration,
                                                         ncol = numbercountries * compartments)
  }



  initial = rep(0, numbercountries * compartments)
  for (val3 in 1:numbercountries) {
    h1 = 1 + (val3 - 1) * 6
    h2 = 6 + (val3 - 1) * 6
    initial[h1:h2] = inp$initialmatrix[val3, ]
  }
  status_matrix[1, ] = initial


  for (i in 2:inp$durationtravel) {



    traveloutregulated = as.matrix(inp$travelregulated[[i]])
    totaltravelout = rowSums(traveloutregulated)

    for (j in 1:numbercountries) {
      c1 = (j - 1) * 6 + 1
      c2 = j * 6
      x = status_matrix[(i - 1), c1:c2]
      out = totaltravelout[j]
      if (x[1] + x[2] > 0) {
        outj = c(round(out * x[1]/(x[1] + x[2]), digits = 0),
                 round(out * x[2]/(x[1] + x[2]), digits = 0),
                 0, 0, 0, 0)
        f_out[i, c1:c2] = outj
      }
      else {
        f_out[i, c1:c2] = c(0, 0, 0, 0, 0, 0)
      }
      theta = thetamatrix[j, ]
      y1 =  rpois(1, harzard1(x,theta))
      #
      y2 =  rpois(1, harzard2(x,theta))
      #
      y3 = rpois(1, harzard3(x,theta))
      #
      y4 =  rpois(1, harzard4(x,theta))
      #
      y5 = rpois(1, harzard5(x,theta))
      if (y1 <= x[1]) {
        x[1] = x[1] - y1
      }
      else {
        y1 = x[1]
        x[1] = 0
      }
      if (y1 - y2 - y5 + x[2] >= 0) {
        x[2] = x[2] + y1 - y2 - y5
      }
      else {
        y2 = x[2] + y1 - y5
        x[2] = 0
      }
      if (y2 < 0) {
        y2 = 0
        y5 = x[2] + y1
      }
      if (y2 - y3 - y4 + x[3] >= 0) {
        x[3] = x[3] + y2 - y3 - y4
      }
      else {
        y3 = y2 - y4 + x[3]
        x[3] = 0
      }
      if (y3 < 0) {
        y3 = 0
        y4 = x[3] + y2
      }
      x[4] = x[4] + y3
      x[5] = x[5] + y4
      x[6] = x[6] + y5
      status_matrix[i, c1:c2] = x
    } #end j loop


    f_outmat = matrix(0, nrow = numbercountries, ncol = numbercountries *
                        compartments)
    for (val in 1:numbercountries) {
      d1 = (val - 1) * 6 + 1
      d2 = val * 6
      f_outtotal = f_out[i, ][d1:d2]
      d3 = d1 + 1
      infect_outtotal = f_out[i, ][d3]
      probdistribute = rep(0, numbercountries)
      for (val6 in 1:numbercountries) {
        if (sum(traveloutregulated[val, ]) > 0) {
          probdistribute[val6] = traveloutregulated[val,
                                                    val6]/sum(traveloutregulated[val, ])
        }
        else {
          probdistribute[val6] = 0
        }
      }
      if (sum(traveloutregulated[val, ]) > 0) {
        infect_outdistribute = rmultinom(1, size = infect_outtotal,
                                         prob = probdistribute)
      }
      else {
        infect_outdistribute = rep(0, numbercountries)
      }
      for (val1 in 1:numbercountries) {
        e1 = (val1 - 1) * 6 + 1
        e2 = val1 * 6
        if (sum(traveloutregulated[val, ]) > 0) {
          tmp = round(f_outtotal * traveloutregulated[val,
                                                      val1]/sum(traveloutregulated[val, ]), digits = 0)
          suseptible = tmp[1] + tmp[2] - infect_outdistribute[val1]
          f_outmat[val, e1:e2] = c(suseptible, infect_outdistribute[val1], tmp[3], tmp[4], tmp[5], tmp[6])

        }
        else {
          f_outmat[val, e1:e2] = rep(0, 6)
        }
      }
    } # end val loop

    #####create matrix active out each time step
    f_out_activequarantine_list = list()
    f_out_activenoquarantine_list = list()

    for (outdone in 1:numbercountries) {

      f_out_activequarantine_list[[outdone]] = matrix(0, nrow = totalduration,
                                                      ncol = numbercountries * compartments)
      f_out_activenoquarantine_list[[outdone]] = matrix(0, nrow = totalduration,
                                                        ncol = numbercountries * compartments)

    }


    for (countryout in 1:numbercountries) {



      durationquarantine_countryout = inp$durationquarantine_adjustedout[countryout]

      for (countryin in 1:numbercountries) {


        #countryout =1
        #countryin =1



        a1 = 1 + (countryin - 1) * 6
        a2 = 6 + (countryin - 1) * 6
        a3 = 3 + (countryin - 1) * 6
        quarantineinp = inp$quarantinerate * f_outmat[countryout,
                                                      a1:a2]
        inp1 = list(durationquarantine = durationquarantine_countryout,
                    ini = quarantineinp)

        inp2 = list(durationquarantine = 0,
                    ini = quarantineinp)



        theta1 = thetamatrix[countryin, ]




        i1 = i + durationquarantine_countryout
        i2 = i + 0
        iadd = (inp$durationtravel -1)+ durationquarantine_countryout # duration keep track active confirmed imported
        i3 = i+ iadd

        inp3 = list(durationquarantine = iadd ,
                    ini = quarantineinp) #keep track number active confirmed imported


        tmp = stochastic_postquarantine_separate(theta1, inp1)
        tmp2 = stochastic_postquarantine_separate(theta1, inp2)
        tmp3 = stochastic_postquarantine_separate(theta1, inp3)


        f_out_prequarantine_list[[countryout]][i2, a1:a2] = tmp2$donequarantine #keep track number imported cases
        f_out_activenoquarantine_list[[countryout]][i:i3,a3] = tmp3$activeconfirm_eachday[,3] #keep track number active confirmed imported cases, no quarantine required



        if(durationquarantine_countryout > 0){
          f_out_donequarantine_list[[countryout]][i1, a1:a2] = tmp$donequarantine

          f_out_activequarantine_list[[countryout]][i:i1,a3] = tmp$activeconfirm_eachday[,3]


        } else{
          f_out_donequarantine_list[[countryout]][i, a1:a2] = tmp$donequarantine

          f_out_activequarantine_list[[countryout]][i,a3] = tmp$activeconfirm_eachday[3] # this reduced to a vector

        } #end loop that making sure a valid code when no quarantine required


      } #end loop country in
    } # end loop country out, complete the quarantine loop, S,I, Ru added; and active confirm each day




    ##########Accumulate ctive cases from travel
    for(country in 1:numbercountries){
      f_out_activequarantine_addlist[[country]] = f_out_activequarantine_addlist[[country]] + f_out_activequarantine_list[[country]]
      f_out_activenoquarantine_addlist[[country]] = f_out_activenoquarantine_addlist[[country]] + f_out_activenoquarantine_list[[country]]

    }


    ############ Done quarantine return for each country
    f_in_donequarantine = matrix(0, nrow = totalduration,
                                 ncol = numbercountries * compartments) # avoid overlap adding, set to 0

    f_in_prequarantine = matrix(0, nrow = totalduration,
                                ncol = numbercountries * compartments) # avoid overlap adding, set to 0


    for (countryout1 in 1:numbercountries) {
      for (countryin1 in 1:numbercountries) {
        aa1 = 1 + (countryin1 - 1) * 6
        aa2 = 6 + (countryin1 - 1) * 6
        f_in_donequarantine[, aa1:aa2] = f_in_donequarantine[,
                                                             aa1:aa2] + f_out_donequarantine_list[[countryout1]][,
                                                                                                                 aa1:aa2]
        f_in_prequarantine[, aa1:aa2] = f_in_prequarantine[,
                                                           aa1:aa2] + f_out_prequarantine_list[[countryout1]][,
                                                                                                              aa1:aa2]


      }
    }


    #########Active confirmed import updated for each country
    f_in_activeupdated_quarantine = matrix(0, nrow = totalduration,
                                           ncol = numbercountries * compartments) # avoid overlap adding, set to 0

    f_in_activeupdated_noquarantine = matrix(0, nrow = totalduration,
                                             ncol = numbercountries * compartments) # avoid overlap adding, set to 0


    for (countryout1 in 1:numbercountries) {
      for (countryin1 in 1:numbercountries) {
        aa1 = 1 + (countryin1 - 1) * 6
        aa2 = 6 + (countryin1 - 1) * 6
        f_in_activeupdated_quarantine[, aa1:aa2] = f_in_activeupdated_quarantine[, aa1:aa2] +
          f_out_activequarantine_addlist[[countryout1]][, aa1:aa2]

        f_in_activeupdated_noquarantine[, aa1:aa2] = f_in_activeupdated_noquarantine[, aa1:aa2] +
          f_out_activenoquarantine_addlist[[countryout1]][, aa1:aa2]

      }
    }



    ##############

    for (val2 in 1:numbercountries) {
      f1 = (val2 - 1) * 6 + 1
      f2 = val2 * 6
      f_in[i, f1:f2] = colSums(f_outmat[, f1:f2])
    }

    update = status_matrix[i, ] + f_in_donequarantine[i,
    ] + (1 - inp$quarantinerate) * f_in[i, ] - f_out[i,
    ] + f_in_activeupdated_quarantine[i,]



    update[update < 0.5] = 0
    status_matrix[i, ] = update


  }


  return(list(model_output = round(status_matrix, digits = 0),
              activeconfirm_imported = round(f_in_activeupdated_noquarantine[1:inp$durationtravel,], digits=0),
              travelarrival_postquarantine = round(f_in_donequarantine[1:inp$durationtravel,], digits=0),
              travelarrival_prequarantine = round(f_in_prequarantine[1:inp$durationtravel,], digits=0) ) )
}
leminhthien2011/CONETTravel documentation built on April 18, 2021, 4:17 a.m.