# metric_stats and metric_stats2 ####
testthat::test_that("metric_stats & metric_stats2", {
#' # data, benthos
df_bugs <- BioMonTools::data_mmi_dev
# Add UFC, 2021-11-02
df_bugs$UFC <- NA_integer_
df_bugs$ELEVATION_ATTR <- NA_character_
df_bugs$GRADIENT_ATTR <- NA_character_
df_bugs$WSAREA_ATTR <- NA_character_
# Munge Names
names(df_bugs)[names(df_bugs) %in% "BenSampID"] <- "SAMPLEID"
names(df_bugs)[names(df_bugs) %in% "TaxaID"] <- "TAXAID"
names(df_bugs)[names(df_bugs) %in% "Individuals"] <- "N_TAXA"
names(df_bugs)[names(df_bugs) %in% "Exclude"] <- "EXCLUDE"
names(df_bugs)[names(df_bugs) %in% "Class"] <- "INDEX_CLASS"
names(df_bugs)[names(df_bugs) %in% "Unique_ID"] <- "SITEID"
# Calc Metrics
cols_keep <- c("Ref_v1", "CalVal_Class4", "SITEID", "CollDate", "CollMeth")
# INDEX_NAME and INDEX_CLASS kept by default
df_metval <- BioMonTools::metric.values(df_bugs
, "bugs"
, fun.cols2keep = cols_keep)
# Calc Stats
col_metrics <- names(df_metval)[9:ncol(df_metval)]
col_SampID <- "SAMPLEID"
col_RefStatus <- "REF_V1"
RefStatus_Ref <- "Ref"
RefStatus_Str <- "Strs"
RefStatus_Oth <- "Other"
col_DataType <- "CALVAL_CLASS4"
DataType_Cal <- "cal"
DataType_Ver <- "verif"
col_Subset <- "INDEX_CLASS"
Subset_Value <- "CentralHills"
df_stats <- BioMonTools::metric.stats(df_metval
, col_metrics
, col_SampID
, col_RefStatus
, RefStatus_Ref
, RefStatus_Str
, RefStatus_Oth
, col_DataType
, DataType_Cal
, DataType_Ver
, col_Subset
, Subset_Value)
df_numbers <- df_stats[, -(1:4)]
# 2022-02-22, replace Inf and -Inf with NA
df_num_inf <- sapply(df_numbers, is.infinite)
df_numbers[df_num_inf] <- NA
#
sum_calc <- sum(df_numbers, na.rm = TRUE)
#sum_qc <- 315244.8
#sum_qc <- 331996.8 # new value, 2021-04-14
sum_qc <- 367118.8 # new value, 2022-02-22, new metrics
# test
testthat::expect_equal(sum_calc, sum_qc, tolerance = 0.02)
# # metricstats2
#
# # Calc Stats2 (z-scores and DE)
# data_metval <- df_metval
# data_metstat <- df_stats
# col_metval_RefStatus <- "REF_V1"
# col_metval_DataType <- "CALVAL_CLASS4"
# col_metval_Subset <- "INDEX_CLASS"
# col_metstat_RefStatus <- "REF_V1"
# col_metstat_DataType <- "CALVAL_CLASS4"
# col_metstat_Subset <- "INDEX_CLASS"
# RefStatus_Ref = "Ref"
# RefStatus_Str = "Strs"
# RefStatus_Oth = "Other"
# DataType_Cal = "cal"
# DataType_Ver = "verif"
# Subset_Value = "CENTRALHILLS"
# df_stats2 <- BioMonTools::metric.stats2(data_metval
# , data_metstat
# , col_metval_RefStatus
# , col_metval_DataType
# , col_metval_Subset
# , col_metstat_RefStatus
# , col_metstat_DataType
# , col_metstat_Subset
# , RefStatus_Ref
# , RefStatus_Str
# , RefStatus_Oth
# , DataType_Cal
# , DataType_Ver
# , Subset_Value)
#
#
# df_numbers2 <- df_stats2[, -(1:4)]
# # -Inf in CV column, replace with NA
# df_numbers2[df_numbers2 == -Inf] <- NA
# df_numbers2 <- df_numbers2[, 1:15]
#
# sum2_calc <- sum(df_numbers2, na.rm = TRUE)
#
# sum2_qc <- 315376
#
# # test
# testthat::expect_equal(sum2_calc, sum2_qc, tolerance = 0.02)
})## Test ~ qc_checks ~ END
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.