BGLR_Ordinal_CV <- function(genotypes, phenotype,model="BL",Kernel="Markers",markers=NULL,PCA=NULL,CV=NULL, nIter = 15000, burnIn = 5000, folds = 5,Sparse=FALSE,m=NULL,degree=NULL, nL=NULL)
{
# Make the CV list
fold_list <- make_CV_sets(length(phenotype[,2]), k = folds)
BGLR_acc_results <- list()
BGLR_acc_metrics<- list()
Predictions_ALL<-list()
for (i in 1:length(fold_list))
{
fold_indices <- which(fold_list[[i]])
if(Kernel=="Markers"){
if(!is.null(markers)){
samp=sample(1:ncol(genotypes), markers)
genotypes=genotypes[,samp]
}else{
genotypes <- genotypes
}
}else{
maf <- calc_maf_apply(genotypes, encoding = c(0, 1, 2))
mono_indices <- which(maf ==0)
if(length(mono_indices)!=0){
genotypes = genotypes[,-mono_indices]
}
if(Sparse==TRUE){
X=as.matrix(genotypes)
X=apply(genotypes,2,as.numeric)
#sum(rowSums(is.na(X)))
XS<-scale(X,center=TRUE,scale=TRUE)
#sum(rowSums(is.na(XS)))
library(caret)
nzv <- nearZeroVar(XS)
XSZV <- XS[, -nzv]
#sum(rowSums(is.na(XSZV)))
X=XSZV
K=Sparse_Kernel_Construction(m=m,X=X,name=Kernel, degree=degree,nL=nL)
}else{
X=as.matrix(genotypes)
X=apply(genotypes,2,as.numeric)
#sum(rowSums(is.na(X)))
XS<-scale(X,center=TRUE,scale=TRUE)
#sum(rowSums(is.na(XS)))
library(caret)
nzv <- nearZeroVar(XS)
XSZV <- XS[, -nzv]
#sum(rowSums(is.na(XSZV)))
X=XSZV
K=Kernel_computation(X=X,name=Kernel,degree=degree, nL=nL)
}
}
# Split into training and testing data
pheno_train <- phenotype[,2]
pheno_train[pheno_train=="NaN"]<-NA
pheno_train=droplevels(pheno_train)
pheno_train[-fold_indices] <- NA
# Calculate the GS model using BGLR
##Ordinal
#Without PCs
if(length(CV)==0){
if(!is.null(PCA)){
if(Kernel=="Markers"){
BO_ETA<-list(list(X=PCA,model="FIXED"),list(X=as.matrix(genotypes),model=model))
BO_results <- BGLR(y = pheno_train,response_type = 'ordinal', ETA = BO_ETA_PC, nIter=nIter, burnIn=burnIn)
BO_predictions <- predict(BO_results)
}else{
BO_ETA<-list(list(X=PCA,model="FIXED"),list(K=K,model=model))
BO_results <- BGLR(y = pheno_train,response_type = 'ordinal', ETA = BO_ETA_PC, nIter=nIter, burnIn=burnIn)
BO_predictions <- predict(BO_results)
}
}else{
if(Kernel=="Markers"){
BO_ETA<-list(list(X=as.matrix(genotypes),model=model))
BO_results <- BGLR(y = pheno_train,response_type = 'ordinal', ETA = BO_ETA, nIter=nIter, burnIn=burnIn)
BO_predictions <- predict(BO_results)
}else{
BO_ETA<-list(list(K=K,model=model))
BO_results <- BGLR(y = pheno_train,response_type = 'ordinal', ETA = BO_ETA, nIter=nIter, burnIn=burnIn)
BO_predictions <- predict(BO_results)
}
}
}else{
if(!is.null(PCA)){
fix_PC=as.matrix(cbind(CV,PCA))
if(Kernel=="Markers"){
BO_ETA<-list(list(X=fix_PC,model="FIXED"),list(X=as.matrix(genotypes),model=model))
BO_results <- BGLR(y = pheno_train,response_type = 'ordinal', ETA = BO_ETA_PC, nIter=nIter, burnIn=burnIn)
BO_predictions <- predict(BO_results)
}else{
BO_ETA<-list(list(X=fix_PC,model="FIXED"),list(K=K,model=model))
BO_results <- BGLR(y = pheno_train,response_type = 'ordinal', ETA = BO_ETA_PC, nIter=nIter, burnIn=burnIn)
BO_predictions <- predict(BO_results)
}
}else{
if(Kernel=="Markers"){
BO_ETA<-list(list(X=CV,model="FIXED"),list(X=as.matrix(genotypes),model=model))
BO_results <- BGLR(y = pheno_train,response_type = 'ordinal', ETA = BO_ETA, nIter=nIter, burnIn=burnIn)
BO_predictions <- predict(BO_results)
}else{
BO_ETA<-list(list(X=CV,model="FIXED"),list(K=K,model=model))
BO_results <- BGLR(y = pheno_train,response_type = 'ordinal', ETA = BO_ETA, nIter=nIter, burnIn=burnIn)
BO_predictions <- predict(BO_results)
}
}
}
BO_acc <- cor(as.numeric(phenotype[-fold_indices,2]), BO_predictions[-fold_indices],use = "complete.obs")
BO_sacc <- cor(as.numeric(phenotype[-fold_indices,2]), BO_predictions[-fold_indices],use = "complete.obs", method = c("spearman"))
DF=BO_results$probs[-fold_indices,]
probs=colnames(DF)[max.col(replace(DF, cbind(seq_len(nrow(DF)), max.col(DF,ties.method="first")), -Inf), "first")]
#probs=colnames(DF)[max.col(DF,ties.method="first")]
BO_acc_cat=cor(as.numeric(phenotype[-fold_indices,2]), as.numeric(probs),use = "complete.obs")
metrics=postResample(as.factor(probs),phenotype[-fold_indices,2])
tests=data.frame(Observed=phenotype[-fold_indices,2],BO_results$probs[-fold_indices,],Predicted=factor(probs))
mets=confusionMatrix(data = tests$pred, reference = tests$obs)
results=c(ACC=BO_acc,SACC=BO_sacc,C_ACC=BO_acc_cat,metrics)
#ALL
Predictions<-data.frame(Fold=rep(i,length(phenotype[-fold_indices,1])),phenotype[-fold_indices,1],tests)
Predictions_ALL[[i]]<-Predictions
BGLR_acc_results[[i]] <- results
BGLR_acc_metrics[[i]] <- mets
}
#, GBLUP_acc, "GBLUP"
model_vect <- c("Pearson","Spearman","Categorical","R2","Kappa")
BGLR_acc_table <- data.frame(matrix(nrow = 0, ncol = 3))
for (i in 1:length(BGLR_acc_results))
{
results_long <- data.frame(rep(i, length(model_vect)), model_vect, unlist(BGLR_acc_results[[i]]))
BGLR_acc_table <- rbind(BGLR_acc_table, results_long)
}
names(BGLR_acc_table) <- c("fold", "model", "r")
data_wide <- spread(BGLR_acc_table, model, r)
acc_fold=data.frame(data_wide)
results=colMeans(acc_fold[,2:6], na.rm = TRUE)
results_ALL=list(Results=results,CM=BGLR_acc_metrics,Predictions=Predictions_ALL)
return(results_ALL)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.