View source: R/segmentationCBS.R
segmentationCBS | R Documentation |
The default segmentation function. This function is called via the
fun.segmentation
argument of runAbsoluteCN
. The
arguments are passed via args.segmentation
.
segmentationCBS(
normal,
tumor,
log.ratio,
seg,
plot.cnv,
sampleid,
weight.flag.pvalue = 0.01,
alpha = 0.005,
undo.SD = NULL,
vcf = NULL,
tumor.id.in.vcf = 1,
normal.id.in.vcf = NULL,
max.segments = NULL,
min.logr.sdev = 0.15,
prune.hclust.h = NULL,
prune.hclust.method = "ward.D",
chr.hash = NULL,
additional.cmd.args = "",
centromeres = NULL
)
normal |
Coverage data for normal sample. |
tumor |
Coverage data for tumor sample. |
log.ratio |
Copy number log-ratios, one for each target in the coverage files. |
seg |
If segmentation was provided by the user, this data structure will contain this segmentation. Useful for minimal segmentation functions. Otherwise PureCN will re-segment the data. This segmentation function ignores this user provided segmentation. |
plot.cnv |
Segmentation plots. |
sampleid |
Sample id, used in output files. |
weight.flag.pvalue |
Flag values with one-sided p-value smaller than this cutoff. |
alpha |
Alpha value for CBS, see documentation for the |
undo.SD |
|
vcf |
Optional |
tumor.id.in.vcf |
Id of tumor in case multiple samples are stored in VCF. |
normal.id.in.vcf |
Id of normal in in VCF. Currently not used. |
max.segments |
If not |
min.logr.sdev |
Minimum log-ratio standard deviation used in the model. Useful to make fitting more robust to outliers in very clean data. |
prune.hclust.h |
Height in the |
prune.hclust.method |
Cluster method used in the |
chr.hash |
Mapping of non-numerical chromsome names to numerical names
(e.g. chr1 to 1, chr2 to 2, etc.). If |
additional.cmd.args |
|
centromeres |
A |
data.frame
containing the segmentation.
Markus Riester
Olshen, A. B., Venkatraman, E. S., Lucito, R., Wigler, M. (2004). Circular binary segmentation for the analysis of array-based DNA copy number data. Biostatistics 5: 557-572.
Venkatraman, E. S., Olshen, A. B. (2007). A faster circular binary segmentation algorithm for the analysis of array CGH data. Bioinformatics 23: 657-63.
runAbsoluteCN
normal.coverage.file <- system.file("extdata", "example_normal_tiny.txt",
package = "PureCN")
tumor.coverage.file <- system.file("extdata", "example_tumor_tiny.txt",
package = "PureCN")
vcf.file <- system.file("extdata", "example.vcf.gz",
package = "PureCN")
interval.file <- system.file("extdata", "example_intervals_tiny.txt",
package = "PureCN")
# The max.candidate.solutions, max.ploidy and test.purity parameters are set to
# non-default values to speed-up this example. This is not a good idea for real
# samples.
ret <-runAbsoluteCN(normal.coverage.file = normal.coverage.file,
tumor.coverage.file = tumor.coverage.file, vcf.file = vcf.file,
genome = "hg19", sampleid = "Sample1", interval.file = interval.file,
max.candidate.solutions = 1, max.ploidy = 4,
test.purity = seq(0.3, 0.7, by = 0.05),
fun.segmentation = segmentationCBS,
args.segmentation = list(alpha = 0.001))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.