Description Usage Arguments Value Examples
View source: R/Gaussian_Process_Survival.R
It works for classification, regression, cox regression and poission regression The first/main purpose is to implement Gaussian process into Cox's model The glmnet is used to solve a general Ridge-regularized regression solver. This may be changed in the future.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | gpsrc(x, ...)
## S3 method for class 'formula'
gpsrc(formula, data = environment(formula), ...)
## Default S3 method:
gpsrc(x, y, scaled = TRUE, kernel = "rbfdot",
kpar = "automatic", var = 1, family = switch(class(y), Surv = "cox",
factor = ifelse(nlevels(y) > 2, "multinomial", "binomial"), integer =
"poisson", "gaussian"), ...)
## S3 method for class 'gpsrc'
predict(object, newdata, type = c("response", "probabilities",
"link", "risk"))
|
x |
Design matrix (NO intercept) |
... |
Further argument passed to internal functions |
formula |
Model formula |
data |
Data |
y |
Reponse vector of type double, integer, factor or Surv |
scaled |
Logical value indicating if to standardize x, y |
kernel |
String or 'kernel' object (see kernlab::gausspr) |
kpar |
A list of Kernel parameters or 'automatic' if a radial kernel specified |
var |
Variance of response (from the Gaussian process). Only for regression |
family |
Options are 'gaussian', 'binomial', 'multinomial', 'poisson', 'cox' |
object |
'gpsrc' object from |
newdata |
Design matrix of test set |
type |
Type of output |
A 'gprsc' object
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | ## classification
library(pROC);
library(mlbench);
data(Sonar);
i.tr <- sample(nrow(Sonar), size = 0.6*nrow(Sonar));
gp <- gpsrc(Class ~., data = Sonar[i.tr,], kpar = list(sigma = 0.01))
gp.pred <- predict(gp, Sonar[-i.tr, ], type = 'prob')
cat('AUC:', roc(Sonar$Class[-i.tr], gp.pred[, 2])$auc, '\n');
## regression
data(BostonHousing);
BH <- BostonHousing;
i.tr <- sample(nrow(BH), 200);
gp2 <- gpsrc(medv ~., data = BH[i.tr, ], kpar = list(sigma = 0.1));
gp2.pred <- predict(gp2, BH[-i.tr, ])
cat('RMSE:', sqrt(mean((BH$medv[-i.tr] - gp2.pred)^2)), '\n');
## survival
library(survival);
data(pbc, package = 'randomForestSRC');
pbc <- na.omit(pbc);
i.tr <- sample(nrow(pbc), 100);
gp <- gpsrc(Surv(days, status) ~., data = pbc[i.tr, ],
kernel = 'laplacedot', kpar = list(sigma = 0.1));
gp.pred <- predict(gp, pbc[-i.tr, ])
cat('C-index:', survConcordance(Surv(days, status) ~ gp.pred, data = pbc[-i.tr, ])$concordance, '\n');
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.