kkm: Kernel Weighted Kaplan-Meier model for survival

Description Usage Arguments Value Examples

View source: R/survival_kernel_knn.R

Description

Kernel Weighted Kaplan-Meier model for survival

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
kkm(x, ...)

## S3 method for class 'formula'
kkm(formula, data, xtest = NULL, ytest = NULL, ...)

## Default S3 method:
kkm(x, y, xtest = NULL, ytest = NULL,
  return.train.prediction = FALSE || is.null(xtest), scaled = TRUE,
  k = min(30, nrow(x)), times = y[as.logical(y[, 2]), 1],
  type = c("kaplan-meier", "nelson-aalen"), kernel = "rbfdot",
  kpar = "automatic")

Arguments

x

Design matrix (NO intercept)

...

Further argument passed to internal functions

formula

Model formula

data

Data frame

xtest

If the 'formula-data' format used, 'xtest' is a data frame of the test set. If the 'x-y' method called, 'xtest' is the design matrix of the test set

ytest

(optional) Survival outcome for testset

y

Reponse vector of 'Surv' object

scaled

Logical value indicating if to standardize x, y

k

Number of nearest neighbour used. Default to 'nrow(x)' which seems the best

times

Times to evaluate survival probabilities. Currently no used. All unique event times in training are used

type

Type of estimator, either 'Kaplan-meier' or 'nelson-aalen'

kernel

String or 'kernel' object (see kernlab::gausspr)

kpar

A list of Kernel parameters or 'automatic' if a radial kernel specified

Value

A 'kkm' object

Examples

1
2
3
4
5
6
7
8
9
library(survival);
data(pbc, package = 'randomForestSRC');
pbc <- na.omit(pbc);
i.tr <- sample(nrow(pbc), 100);
kkm.pred <- kkm(Surv(days, status) ~., data = pbc[i.tr, ], xtest = pbc[-i.tr, ], kernel = 'laplacedot', kpar = list(sigma = 0.1));
# concordance index if using 30th event time
survConcordance(Surv(days, status) ~ I(1 - kkm.pred$test.predicted.survival[, 30]), data = pbc[-i.tr, ])$concordance

plot(kkm.pred, subset = sample(length(i.tr), 10), lwd = 2)

linxihui/sml documentation built on May 21, 2019, 6:39 a.m.