#################Create eeg_lst object##################################
rm(list=ls())
library(magrittr)
library(eeguana)
library(plyr)
library(dplyr)
library(ggplot2)
library(r41sqrt10)
r41sqrt10:::t.test.light
files=c("data_seg_mean_sample_avepot5_15.Rdata",
"data_seg_median_sample_avepot5_15.Rdata",
# "data_seg_mean_sample_avepot7_15.Rdata",
# "data_seg_median_sample_avepot7_15.Rdata",
"data_seg_mean_sample_avepot15.5_18.5.Rdata",
"data_seg_median_sample_avepot15.5_18.5.Rdata",
"data_seg_mean_sample_avepot16_18.Rdata",
"data_seg_median_sample_avepot16_18.Rdata",
"data_seg_mean_sample_avepot14_20.Rdata",
"data_seg_median_sample_avepot14_20.Rdata")
file=files[2]
for(file in files){
load(file)
Y=as.matrix(D$.signal[(1:32),,with=TRUE])-
as.matrix(D$.signal[(33:64),,with=TRUE])
res=r41sqrt10:::t.test.light(Y[,-(1:2)],tail=0)
print(min(res$p,na.rm = TRUE))
print(min(p.adjust(na.omit(res$p),method = "BH")))
}
data_seg=D
D$.segments
Y=as.matrix(data_seg$.signal[(1:32)*2,,with=TRUE])-
as.matrix(data_seg$.signal[(1:32)*2-1,,with=TRUE])
res=t.test.light(Y[,-(1:2)],tail=0)
min(res$p)
dim( data_seg$.signal)
names(data_seg$.signal)
table(data_seg$.signal$.id)
data_seg$.signal$.sample
str( data_seg$.segments)
str( data_seg$.events)
table( data_seg$.segments$condition)
table( data_seg$.segments$subj)
# str( data_seg)
#Some plots
#Plot of all the ERP of the O1 electrode
data_seg %>%
select(H1) %>%
ggplot(aes(x = .time, y = .value)) +
geom_line()
#Plot ERP of each subject (average across condition):
# data_seg %>%
# select(H1) %>%
# ggplot(aes(x = .time, y = .value)) +
# geom_line(aes(group = subj)) +
# stat_summary(
# fun = "mean", geom = "line", alpha = 1, size = 1.5,
# aes(color = "red"),show.legend = FALSE
# )
##### average by condition
Dav= data_seg%>%group_by(.sample,condition)%>%summarize_all(mean, na.rm = TRUE)
dim(Dav$.signal)
Dav$.segments
Dav %>%
select(H1) %>%
ggplot(aes(x = .time, y = .value)) +
geom_line(aes(group = condition,color=condition))
##### average POTENTIAL in range
AvePot= data_seg%>%filter(between(as_time(.sample, unit = "s"), .1, .2)) %>%
group_by(condition)%>%summarize_all(mean, na.rm = TRUE)
AvePot
#Plot ERP of condition (average across subject)
data_seg %>%
select(H1, G2, F2,E3) %>%
ggplot(aes(x = .time, y = .value)) +
geom_line(alpha = .1, aes(group = .id, color = condition)) +
stat_summary(
fun = "mean", geom = "line", alpha = 1, size = 1.5,
aes(color = condition)
) +
facet_wrap(~.key) +
geom_vline(xintercept = 0, linetype = "dashed") +
geom_vline(xintercept = .17, linetype = "dotted") +
theme(legend.position = "bottom")
ERP_data <- data_seg %>%
group_by(.sample, condition) %>%
summarize_at(channel_names(.), mean, na.rm = TRUE)
ERP_plot<- ERP_data %>%
ggplot(aes(x = .time, y = .value)) +
geom_line(aes(color = condition)) +
facet_wrap(~.key) +
theme(legend.position = "bottom") +
ggtitle("ERPs for disgust vs object") +
theme_eeguana()
ERP_plot
ERP_plot %>% plot_in_layout()
data_seg %>%
filter(between(as_time(.sample, unit = "s"), .05, .15)) %>%
group_by(condition) %>%
summarize_at(channel_names(.), mean, na.rm = TRUE) %>%
plot_topo() +
annotate_head() +
geom_contour() +
geom_text(colour = "black") +
facet_grid(~condition)
# df <- data_seg %>%
# select(O1, O2, P7, P8) %>%
# as_tibble() %>%
# # We can use regular dplyr functions now
# group_by(.key, .time) %>%
# summarize(
# `t-value` = t.test(
# .value[condition == "disgust"],
# .value[condition == "object"]
# )$statistic
# )
#
#
# ggplot(df, aes(x = .time, y = `t-value`)) + geom_line() +
# facet_wrap(~.key)
#
#
# faces_seg_t <-
# data_seg %>%
# select(O1, O2, P7, P8) %>%
# group_by(.sample) %>%
# summarize_at(channel_names(.), list(t = ~t.test(
# .[condition == "disgust"],
# .[condition == "object"]
# )$statistic))
#
# faces_seg_t %>%
# ggplot(aes(x = .time, y = .value)) +
# geom_line(alpha = .1, aes(group = .id)) +
# stat_summary(fun = "mean", geom = "line", alpha = 1, size = 1) +
# facet_wrap(~.key) +
# theme(legend.position = "bottom")
#
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.