stepNdel_c <- function(model, data, setup, stepPrevious_final){
probVs <- setup$probVs
badmiivs <- setup$badmiivs
goodmiivs <- setup$goodmiivs
badmiivs_int <- setup$badmiivs_int
sig_sargantable_int <- setup$sig_sargantable_int
# badmiivs_new <- stepPrevious_final$badmiivs_nextstep
# ##first set up the new combos of miivs to be deleted/retained
# for (p in 1:length(badmiivs_int)){
# new_colnum <- length(badmiivs_new[[p]])
# new_rownum <- length(badmiivs_int[[p]])-length(badmiivs_new[[p]])+1
# badmiivs[[p]] <- matrix(NA, nrow = new_rownum, ncol = new_colnum)
# for (i in 1:new_rownum){
# badmiivs[[p]][i,] <- setdiff(badmiivs_int[[p]],badmiivs_new[[p]])[i]
# }
# for (q in 1:new_colnum){
# badmiivs[[p]][new_rownum,q] <- badmiivs_new[[p]][q]
# }
# }
#
##add more candidates
badmiivs_new <- stepPrevious_final$badmiivs_nextstep
newbadmiivs <- list()
for(p in 1:length(badmiivs_new)){
newbadmiivs[[p]] <- list()
new_colnum <- length(badmiivs_new[[1]][[1]])
new_rownum <- dim(stepPrevious_final$badmiivs[[1]])[1]+1
for(i in 1:length(badmiivs_new[[p]])){
newbadmiivs[[p]][[i]] <- matrix(NA, nrow = new_rownum, ncol = new_colnum)
for(r in 1:new_rownum){
newbadmiivs[[p]][[i]][r,] <- setdiff(badmiivs_int[[p]], badmiivs_new[[p]][[i]])[r]
}
for(q in 1:new_colnum){
newbadmiivs[[p]][[i]][new_rownum, q] <- badmiivs_new[[p]][[i]][q]
}
}
# badmiivs_new[[p]] <- matrix(NA, nrow = new_rownum, ncol = new_colnum)
}
names(newbadmiivs) <- names(badmiivs)
for(p in 1:length(badmiivs)){
badmiivs[[p]] <- t(unique(t(apply(t(do.call(cbind, newbadmiivs[[p]])), 1, sort))))
}
##then repeat the steps in step1del_combo
fit_del1 <- list()
newmiivs <- list()
delMiivsSargan <- list()
for (p in 1:length(probVs)){
##p is the name of the problematic variable
fit_del1[[p]] <- list()
newmiivs[[p]] <- list()
delMiivsSargan[[p]] <- as.data.frame(matrix(NA, nrow = 2, ncol = ncol(badmiivs[[p]])) )
names(delMiivsSargan)[p] <- probVs[p]
rownames(delMiivsSargan[[p]]) <- c("sargandef", "newsargan")
for (i in 1:ncol(badmiivs[[p]])){
##i for each deleted MIIV
##then get the list of MIIVs
newmiivs[[p]][[i]] <- paste0(goodmiivs[[p]], sep = "\n",
paste0(names(badmiivs)[p], sep = "~",
paste0(paste0(badmiivs[[p]][,i]), collapse = "+")))
##get the fit for each MIIV deletion
fit_del1[[p]][[i]] <- miive(model = model, data = data, var.cov = T, miiv.check = F,
instruments = newmiivs[[p]][[i]])
colnames(delMiivsSargan[[p]])[i] <- paste0(setdiff(badmiivs_int[[p]], paste0(badmiivs[[p]][,i])), collapse = "+")
#paste0(paste0(badmiivs[[p]][,i]), collapse = "+")
#paste0(setdiff(badmiivs_int[[p]], paste0(badmiivs[[p]][,i])), collapse = "+")
##then get the sargan for each miiv deletion
delMiivsSargan[[p]][1,i] <- sig_sargantable_int[1,p] - fit_del1[[p]][[i]]$eqn[[sig_sargantable_int[3,p]]]$sargan
delMiivsSargan[[p]][2,i] <- fit_del1[[p]][[i]]$eqn[[sig_sargantable_int[3,p]]]$sargan
}
}
# df1 <- qchisq(.95, df = 1)
# #store the max chi square drop
# maxdiff <- sapply(delMiivsSargan, function(i) max(i[1,]))
# #max needs to be greater than df1
# maxdiff <- maxdiff[maxdiff>df1]
# #find list name
# drop_location <- names(delMiivsSargan)[sapply(seq_along(delMiivsSargan),
# function(x) {any(delMiivsSargan[[x]]==maxdiff[x])})]
# drop_location_num <- sapply(drop_location, function(x) match(x, names(delMiivsSargan)))
#
# drop_MIIV <- sapply(drop_location_num, function(i)
# colnames(delMiivsSargan[[i]])[delMiivsSargan[[i]][1,] == maxdiff[i]])
# ##get the equation order for these variables (the fit$eqn[[p]])
# sargan_eqnorder <- as.numeric(sig_sargantable_int[3,])
#
# badmiivs_candidate <- list()
# for (p in 1:length(drop_MIIV)){
# badmiivs_candidate[[p]] <- strsplit(drop_MIIV[p],split ='+', fixed = T)[[1]]
# names(badmiivs_candidate)[p] <- probVs[p]
# }
drop_MIIV <- lapply(delMiivsSargan, function(i) i[which(i[2,]<4)])
#drop_MIIV <- drop_MIIV[sapply(drop_MIIV, function(i) !ncol(i)==0)]
# maxdiff <- sapply(delMiivsSargan, function(i) max(i[1,]))
# drop_location <- names(delMiivsSargan)[sapply(seq_along(delMiivsSargan),
# function(x) {any(delMiivsSargan[[x]]==maxdiff[x])})]
# drop_location_num <- sapply(drop_location, function(x) match(x, names(delMiivsSargan)))
# # drop_MIIV_2 <- sapply(drop_location_num, function(i)
# # colnames(delMiivsSargan[[i]])[delMiivsSargan[[i]][1,] == maxdiff[i]])
# drop_MIIV_2 <- sapply(drop_location_num, function(i)
# delMiivsSargan[[i]][delMiivsSargan[[i]][1,] == maxdiff[i]])
minsargan <- sapply(delMiivsSargan, function(i) min(i[2,]))
# drop_num <- vector()
# for(p in 1:length(minsargan)){
# drop_num[p] <- which(delMiivsSargan[[p]][2,]==minsargan[p])
# }
drop_MIIV_2 <- list()
for(p in 1:length(minsargan)){
drop_MIIV_2[[p]] <- delMiivsSargan[[p]][which(delMiivsSargan[[p]][2,]==minsargan[p])]
}
droptest <- list()
for(p in 1:length(drop_MIIV)){
if(!ncol(drop_MIIV[[p]])==0){
droptest[[p]] <-drop_MIIV[[p]]
}
else{
droptest[[p]] <- drop_MIIV_2[[p]]
}
names(droptest)[p] <- names(drop_MIIV)[p]
}
badmiivs_nextstep <- list()
for(p in 1:length(droptest)){
badmiivs_nextstep[[p]] <- list()
names(badmiivs_nextstep)[p] <- names(droptest)[p]
for(i in 1:length(droptest[[p]])){
badmiivs_nextstep[[p]][[i]] <- strsplit(colnames(droptest[[p]])[i], split = "+", fixed = T)[[1]]
}
}
finalobj <- list(#maxdiff = maxdiff,
#drop_location = drop_location,
#drop_location_num = drop_location_num,
drop_MIIV = droptest,
delMiivsSargan = delMiivsSargan,
badmiivs = badmiivs,
badmiivs_nextstep = badmiivs_nextstep
#badmiivs_all = badmiivs_candidate,
#sargan_eqnorder = sargan_eqnorder
#badmiivs = badmiivs_2,
#delMiivsSargan_nextstep = delMiivsSargan_nextstep
)
return(finalobj)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.