#' Create line plots from dynamic and ODBA data
#'
#' Creates one image file containing line plots for X_dynamic, Y_dynamic, Z_dynamic,
#' and another image file containing a line plot for ODBA.
#'
#' @param data A dataframe with columns Time, X_dynamic,
#' Y_dynamic, Z_dynamic, ODBA
#' @param filename String containing the first part of filename for the
#' image files to be created
#'
#' @return None
#' @export
#'
#' @examples
#' filename <- "Custom_Lady_27Mar17_dynamic.csv"
#' data <- read.csv(filename)
#' line_plot_dynamic(data, "Lady_27Mar17_line_plot")
line_plot_dynamic <- function(data, filename) {
plotx <- ggplot(data, aes(x = Time, y = X_dynamic)) +
geom_line(colour = "dark red") +
theme_minimal() +
theme(
axis.text.x = element_blank(),
axis.ticks.x = element_blank()
)
ploty <- ggplot(data, aes(x = Time, y = Y_dynamic)) +
geom_line(colour = "navy") +
theme_minimal() +
theme(
axis.text.x = element_blank(),
axis.ticks.x = element_blank()
)
plotz <- ggplot(data, aes(x = Time, y = Z_dynamic)) +
geom_line(colour = "dark green") +
theme_minimal() +
theme(
axis.text.x = element_blank(),
axis.ticks.x = element_blank()
)
plot <- grid.arrange(plotx, ploty, plotz, nrow = 3)
ggsave(paste(filename, "dynamic.png", sep = "_"), plot)
plot_odba <- ggplot(data, aes(x = Time, y = ODBA)) +
geom_line(colour = "dark red") +
theme_minimal() +
theme(
axis.text.x = element_blank(),
axis.ticks.x = element_blank()
)
ggsave(paste(filename, "ODBA.png", sep = "_"), plot_odba)
}
#' Create histograms from dynamic and ODBA data
#'
#' Creates one image file containing histograms for X_dynamic, Y_dynamic, Z_dynamic,
#' and another image file containing a histogram for ODBA.
#'
#' @param data A dataframe with columns X_dynamic,
#' Y_dynamic, Z_dynamic, ODBA
#' @param filename String containing the first part of filename for the
#' image files to be created
#'
#' @return None
#' @export
#'
#' @examples
#' filename <- "Custom_Lady_27Mar17_dynamic.csv"
#' data <- read.csv(filename)
#' hist_plot_dynamic(data, "Lady_27Mar17_histogram")
hist_plot_dynamic <- function(data, filename) {
plotx <- ggplot(data, aes(X_dynamic)) +
geom_histogram(colour = "dark red", fill = "salmon") +
theme_minimal()
ploty <- ggplot(data, aes(Y_dynamic)) +
geom_histogram(colour = "navy", fill = "light blue") +
theme_minimal()
plotz <- ggplot(data, aes(Z_dynamic)) +
geom_histogram(colour = "dark green", fill = "light green") +
theme_minimal()
plot <- grid.arrange(plotx, ploty, plotz, nrow = 3)
ggsave(paste(filename, "dynamic.png", sep = "_"), plot)
plot_odba <- ggplot(data, aes(ODBA)) +
geom_histogram(colour = "dark red", fill = "salmon") +
theme_minimal()
ggsave(paste(filename, "ODBA.png", sep = "_"), plot_odba)
}
#' Create ACF plots from dynamic and ODBA data
#'
#' Creates one image file containing ACF plots for X_dynamic, Y_dynamic, Z_dynamic,
#' and another image file containing an ACF plot for ODBA.
#'
#' @inheritParams hist_plot_dynamic
#'
#' @return None
#' @export
#'
#' @examples
#' filename <- "Custom_Lady_27Mar17_dynamic.csv"
#' data <- read.csv(filename)
#' acf_plot_dynamic(data, "Lady_27Mar17_acf")
acf_plot_dynamic <- function(data, filename) {
plotx <- ggacf(data$X_dynamic) +
theme_minimal()
ploty <- ggacf(data$Y_dynamic) +
theme_minimal()
plotz <- ggacf(data$Z_dynamic) +
theme_minimal()
plot <- grid.arrange(plotx, ploty, plotz, nrow = 3)
ggsave(paste(filename, "dynamic.png", sep = "_"), plot)
plot_odba <- ggacf(data$ODBA) +
theme_minimal()
ggsave(paste(filename, "ODBA.png", sep = "_"), plot_odba)
}
#' Create PACF plots from dynamic and ODBA data
#'
#' Creates one image file containing PACF plots for X_dynamic, Y_dynamic, Z_dynamic,
#' and another image file containing a PACF plot for ODBA
#'
#' @inheritParams hist_plot_dynamic
#'
#' @return None
#' @export
#'
#' @examples
#' filename <- "Custom_Lady_27Mar17_dynamic.csv"
#' data <- read.csv(filename)
#' pacf_plot_dynamic(data, "Lady_27Mar17_pacf")
pacf_plot_dynamic <- function(data, filename) {
plotx <- ggpacf(data$X_dynamic) +
theme_minimal()
ploty <- ggpacf(data$Y_dynamic) +
theme_minimal()
plotz <- ggpacf(data$Z_dynamic) +
theme_minimal()
plot <- grid.arrange(plotx, ploty, plotz, nrow = 3)
ggsave(paste(filename, "dynamic.png", sep = "_"), plot)
plot_odba <- ggpacf(data$ODBA) +
theme_minimal()
ggsave(paste(filename, "ODBA.png", sep = "_"), plot_odba)
}
#' Create line plots from dynamic and ODBA data, which are colored by behavior
#'
#' Create one image file containing line plots for X_dynamic, Y_dynamic, Z_dynamic,
#' and another image file containing a line plot for ODBA. Each line plot is colored
#' by behavior.
#'
#' @param data A dataframe with columns Time, Behavior, X_dynamic,
#' Y_dynamic, Z_dynamic, ODBA
#' @param filename String containing the first part of filename for the
#' image files to be created
#'
#' @return None
#' @export
#'
#' @examples
#' filename <- "Custom_Lady_27Mar17_dynamic.csv"
#' data <- read.csv(filename)
#' labelled_data <- data %>% filter(!is.na(Behavior))
#' behavior_plot_dynamic(labelled_data, "Lady_27Mar17_plot_behavior")
behavior_plot_dynamic <- function(data, filename) {
plotx <- ggplot(data, aes(x = Time, y = X_dynamic, colour = Behavior)) +
geom_line() +
theme_minimal() +
theme(
axis.text.x = element_blank(),
axis.ticks.x = element_blank(),
text = element_text(size = 7)
) +
scale_color_brewer(palette = "Set1")
ploty <- ggplot(data, aes(x = Time, y = Y_dynamic, colour = Behavior)) +
geom_line() +
theme_minimal() +
theme(
axis.text.x = element_blank(),
axis.ticks.x = element_blank(),
text = element_text(size = 7)
) +
scale_color_brewer(palette = "Set1")
plotz <- ggplot(data, aes(x = Time, y = Z_dynamic, colour = Behavior)) +
geom_line() +
theme_minimal() +
theme(
axis.text.x = element_blank(),
axis.ticks.x = element_blank(),
text = element_text(size = 7)
) +
scale_color_brewer(palette = "Set1")
plot <- grid_arrange_shared_legend(plotx, ploty, plotz,
nrow = 3, ncol = 1,
position = "right")
ggsave(paste(filename, "dynamic.png", sep = "_"), plot)
plot_odba <- ggplot(data, aes(x = Time, y = ODBA, colour = Behavior)) +
geom_line() +
theme_minimal() +
theme(
axis.text.x = element_blank(),
axis.ticks.x = element_blank(),
text = element_text(size = 7)
) +
scale_color_brewer(palette = "Set1")
ggsave(paste(filename, "ODBA.png", sep = "_"), plot_odba)
}
#' Create histograms from dynamic and ODBA data, aggregated by behavior
#'
#' Creates several image files containing histograms for
#' X_dynamic, Y_dynamic, Z_dynamic, and ODBA aggregated by behavior.
#' One set of images includes histograms for all behaviors in one
#' plot, divided by data type. Another set includes X_dynamic, Y_dynamic,
#' and Z_dynamic histograms in one image and ODBA histogram in another,
#' divided by behavior.
#'
#' @param data A dataframe with columns Behavior, X_dynamic,
#' Y_dynamic, Z_dynamic, ODBA
#' @param filename String containing the first part of filename for the
#' image files to be created
#'
#' @return None
#' @export
#'
#' @examples
#' filename <- "Custom_Lady_27Mar17_dynamic.csv"
#' data <- read.csv(filename)
#' labelled_data <- data %>% filter(!is.na(Behavior))
#' filtered_hist_dynamic(labelled_data, "Lady_27Mar17_histogram_filtered")
filtered_hist_dynamic <- function(data, filename) {
plotx <- ggplot(data,
aes(x = X_dynamic, colour = Behavior, fill = Behavior)) +
geom_histogram() +
facet_wrap(~Behavior, ncol = 2) +
theme_minimal() +
scale_fill_brewer(palette = "Pastel1") +
scale_color_brewer(palette = "Set1")
ggsave(paste(filename, "X_dynamic.png", sep = "_"), plotx)
ploty <- ggplot(data,
aes(x = Y_dynamic, colour = Behavior, fill = Behavior)) +
geom_histogram() +
facet_wrap(~Behavior, ncol = 2) +
theme_minimal() +
scale_fill_brewer(palette = "Pastel1") +
scale_color_brewer(palette = "Set1")
ggsave(paste(filename, "Y_dynamic.png", sep = "_"), ploty)
plotz <- ggplot(data,
aes(x = Z_dynamic, colour = Behavior, fill = Behavior)) +
geom_histogram() +
facet_wrap(~Behavior, ncol = 2) +
theme_minimal() +
scale_fill_brewer(palette = "Pastel1") +
scale_color_brewer(palette = "Set1")
ggsave(paste(filename, "Z_dynamic.png", sep = "_"), plotz)
plot_odba <- ggplot(data, aes(x = ODBA, colour = Behavior, fill = Behavior)) +
geom_histogram() +
facet_wrap(~Behavior, ncol = 2) +
theme_minimal() +
scale_fill_brewer(palette = "Pastel1") +
scale_color_brewer(palette = "Set1")
ggsave(paste(filename, "ODBA.png", sep = "_"), plot_odba)
behaviors <- unique(data$Behavior)
for (i in seq_len(length(behaviors))) {
behavior <- behaviors[i]
subdata <- data %>% dplyr::filter(Behavior == behavior)
plotx <- ggplot(subdata, aes(x = X_dynamic)) +
geom_histogram(colour = "dark red", fill = "salmon") +
theme_minimal()
ploty <- ggplot(subdata, aes(x = Y_dynamic)) +
geom_histogram(colour = "navy", fill = "light blue") +
theme_minimal()
plotz <- ggplot(subdata, aes(x = Z_dynamic)) +
geom_histogram(colour = "dark green", fill = "light green") +
theme_minimal()
plot <- grid.arrange(plotx, ploty, plotz, nrow = 3)
ggsave(paste(filename, behavior, "dynamic.png", sep = "_"), plot)
plot_odba <- ggplot(subdata, aes(x = ODBA)) +
geom_histogram(colour = "dark red", fill = "salmon") +
theme_minimal()
ggsave(paste(filename, behavior, "ODBA.png", sep = "_"), plot_odba)
}
}
#' Create histograms from dynamic and ODBA data, for each behavior interval
#'
#' Creates several image files. Each image file contains histograms
#' aggregating a given data type (X_dynamic, Y_dynamic, Z_dynamic, ODBA)
#' over each behavior interval for a given behavior.
#' A behavior interval is a time interval in which the behavior remains
#' constant.
#' Each behavior interval is labelled by a number, in chronological order.
#' If there are many behavior intervals for a given behavior, the
#' plot may be hard to read.
#'
#' @inheritParams filtered_hist_dynamic
#'
#' @return None
#' @export
#'
#' @examples
#' filename <- "Custom_Lady_27Mar17_dynamic.csv"
#' data <- read.csv(filename)
#' labelled_data <- data %>% filter(!is.na(Behavior))
#' behavior_hist_dynamic(labelled_data, "Lady_27Mar17_histogram_behavior")
behavior_hist_dynamic <- function(data, filename) {
n <- length(data$Behavior)
indicies <- c(1, which(data$Behavior != lag(data$Behavior)), n)
m <- length(indicies)
foo <- numeric(n)
for (i in 1:(m - 1)) {
foo[indicies[i]:indicies[i + 1]] <-
rep(i, indicies[i + 1] - indicies[i] + 1)
}
data$BehaviorIndex <- as.character(foo)
behaviors <- unique(data$Behavior)
for (i in seq_len(length(behaviors))) {
behavior <- behaviors[i]
subdata <- data %>% filter(Behavior == behavior)
plotx <- ggplot(data = subdata,
aes(x = X_dynamic,
colour = BehaviorIndex,
fill = BehaviorIndex)) +
geom_histogram() +
facet_wrap(~BehaviorIndex, ncol = 2) +
theme_minimal() +
scale_fill_brewer(palette = "Pastel1") +
scale_color_brewer(palette = "Set1")
ggsave(paste(filename, behavior, "X_dynamic.png", sep = "_"), plotx)
ploty <- ggplot(data = subdata,
aes(x = Y_dynamic,
colour = BehaviorIndex,
fill = BehaviorIndex)) +
geom_histogram() +
facet_wrap(~BehaviorIndex, ncol = 2) +
theme_minimal() +
scale_fill_brewer(palette = "Pastel1") +
scale_color_brewer(palette = "Set1")
ggsave(paste(filename, behavior, "Y_dynamic.png", sep = "_"), ploty)
plotz <- ggplot(data = subdata,
aes(x = Z_dynamic,
colour = BehaviorIndex,
fill = BehaviorIndex)) +
geom_histogram() +
facet_wrap(~BehaviorIndex, ncol = 2) +
theme_minimal() +
scale_fill_brewer(palette = "Pastel1") +
scale_color_brewer(palette = "Set1")
ggsave(paste(filename, behavior, "Z_dynamic.png", sep = "_"), plotz)
plot_odba <- ggplot(data = subdata,
aes(x = ODBA,
colour = BehaviorIndex,
fill = BehaviorIndex)) +
geom_histogram() +
facet_wrap(~BehaviorIndex, ncol = 2) +
theme_minimal() +
scale_fill_brewer(palette = "Pastel1") +
scale_color_brewer(palette = "Set1")
ggsave(paste(filename, behavior, "ODBA.png", sep = "_"), plot_odba)
}
}
#' Create correlation plots of X_dynamic, Y_dynamic, and Z_dynamic,
#' divided by behavior
#'
#' Creates several image plots of correlation plots, divided by behavior.
#'
#' @inheritParams filtered_hist_dynamic
#'
#' @return None
#' @export
#'
#' @examples
#' filename <- "Custom_Lady_27Mar17_dynamic.csv"
#' data <- read.csv(filename)
#' behavior_pairs_plot_dynamic(data, "Lady_27Mar17_dynamic")
behavior_pairs_plot_dynamic <- function(data, filename) {
behaviors <- unique(data$Behavior)
for (i in seq_len(length(behaviors))) {
behavior <- behaviors[i]
subdata <- data %>% filter(Behavior == behavior)
dynamic_data <- subdata %>% select(X_dynamic, Y_dynamic, Z_dynamic)
plot <- ggpairs(dynamic_data,
lower = list(continuous = wrap("smooth", size = 0.1)),
diag = list(continuous = "bar")
) +
theme_minimal()
ggsave(paste(filename, behavior, "correlation.png", sep = "_"), plot)
}
}
#' Create multiple plots for dynamic and ODBA data
#'
#' Creates multiple image files, with different line plots, histograms, etc.
#'
#' @param names List of strings, containing the names used to identify the
#' data sets
#'
#' @return None
#' @export
#'
#' @examples
#' names <- c("BigDaddy_3Apr17", "BigDaddy_20Mar17",
#' "BigGuy_15Feb18", "Eliza_7Sept17",
#' "Eliza_20Sept17", "Lady_27Mar17")
#' get_plots_dynamic(names)
get_plots_dynamic <- function(names){
n <- length(names)
for (i in 1:n){
name <- names[i]
filename <- paste("Custom", index, "dynamic.csv", sep = "_")
data <- read.csv(filename)
labelled_data <- data %>% filter(!is.na(Behavior))
dynamic_data <- data %>% select(X_dynamic, Y_dynamic, Z_dynamic)
line_plot_dynamic(data, paste(name, "line_plot", sep = "_"))
hist_plot_dynamic(data, paste(name, "histogram", sep = "_"))
acf_plot_dynamic(data, paste(name, "acf", sep = "_"))
pacf_plot_dynamic(data, paste(name, "pacf", sep = "_"))
behavior_plot_dynamic(data, paste(name, "plot_behavior", sep = "_"))
behavior_plot_dynamic(labelled_data, paste(name, "plot_behavior_filtered", sep = "_"))
filtered_hist_dynamic(labelled_data, paste(name, "histogram_filtered", sep = "_"))
behavior_hist_dynamic(labelled_data, paste(name, "histogram_behavior", sep = "_"))
pairs_plot(dynamic_data, paste(name, "correlation_dynamic.png", sep = "_"))
behavior_pairs_plot_dynamic(data, paste(name, "dynamic", sep = "_"))
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.