#------------------------------------------------------------------------------
#' The function fits a random forest model using \code{\link{ranger}}.
#'
#' @title Fit a random forest model
#'
#' @param training_dataset a dataframe of the dataset used for model training.
#'
#' @param my_weights character string of the name of the column of \code{training dataset}
#' with case weights.
#'
#' @inheritParams full_routine_bootstrap
#'
#' @inheritParams create_parameter_list
#'
#' @importFrom ranger ranger
#'
#' @return the random forest model object returned by \code{ranger}
#'
#' @export
fit_ranger_RF <- function(parms,
dependent_variable,
covariates_names,
training_dataset,
my_weights){
num_threads <- parms$ranger_threads
min_node_size <- parms$min_node_size
no_trees <- parms$no_trees
wgts <- training_dataset[, my_weights]
train <- training_dataset[, c(dependent_variable, covariates_names)]
ranger(formula = paste0(dependent_variable, "~ ."),
data = train,
num.trees = no_trees,
importance = "impurity",
case.weights = wgts,
write.forest = TRUE,
min.node.size = min_node_size,
verbose = FALSE,
num.threads = num_threads)
}
#------------------------------------------------------------------------------
#' The functions makes predictions using a \code{Ranger} model object and a dataset of covariates.
#'
#' @title Generate predictions from a \code{Ranger} model fit
#'
#' @param mod_obj the random forest model object returned by \code{ranger}.
#'
#' @param dataset the dataframe of the covariate dataset for which to make new predictions.
#'
#' @inheritParams full_routine_bootstrap
#'
#' @importFrom stats predict
#'
#' @export
make_ranger_predictions <- function(mod_obj, dataset, covariates_names){
x_data <- subset(dataset, , covariates_names, drop = FALSE)
preds <- predict(mod_obj, x_data)
preds$predictions
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.