#' Function to compute the Minimum Volume covariance Matrix of an ellipsoid niche model.
#' @description Function to compute the covariance matrix, the niche centroid, and volume of an ellipsoid model.
#' ellipsoid model. It uses the values of the niche variables of the occurrence points.
#' @param data A data.frame or a matrix with the numeric values of the variables
#' that will be used to model the niche.
#' @param mve A logical value. If TRUE a minimum volume ellipsoid will be computed using
#' the function \code{\link[MASS]{cov.rob}} of the \pkg{MASS} package. If False the covariance matrix of the input data will be used.
#' @param level A numerical value specifying the proportion of the data to be
#' used to compute the ellipsoid.
#' @param vars A numeric or a string vector specifying the columns indexes/names of the variables of the input data which will be used to fit the ellipsoid model. If NULL the user will be asked to enter the indexes.
#' interactively
#' @return Returns a list containing the centroid of the ellipsoid, the covariance matrix based on
#' the input data, ellipsoid volume, semi-axis length, and axis coordinates.
#' @export
#' @examples
#' environ_data <- read.csv(system.file("extdata",
#' "nichekmeansCluster.csv",
#' package = "ntbox"))[,-(1:3)]
#' ellipsoid_metadata <- cov_center(environ_data,mve = TRUE,
#' level=0.975,
#' vars = c("bio5","bio6","bio12"))
#' # Ellipsoid center
#' ellipsoid_metadata$centroid
#' # Shape matrix
#' ellipsoid_metadata$covariance
#' # Ellipsoid volume
#' ellipsoid_metadata$niche_volume
#' \dontrun{
#' # Plot ellipsoid
#' rgl::plot3d(rgl::ellipse3d(ellipsoid_metadata$covariance,
#' centre = ellipsoid_metadata$centroid,
#' level = 0.99999),
#' alpha=0.4,col="blue")
#' rgl::points3d(environ_data[,c("bio5","bio6","bio12")])
#' }
cov_center <- function (data, mve = TRUE, level, vars = NULL)
{
if (is.null(vars)) {
nvars <- readline(prompt = "Number of variables to fit the ellipsoid model:\\n\\n")
data <- data.frame(data)
allvars <- names(data)
print(nvars)
vars <- numeric(nvars)
cat("Select a variable form the list:\\n\\n")
for (i in 1:dim(data)[2]) {
cat(i, ".-", allvars[i], "\\n")
}
cont <- 1
while (0 %in% vars) {
n <- readline(prompt = "Enter an option from the above list: ")
if (n %in% 1:dim(data)[2]) {
vars[cont] <- as.numeric(n)
cont <- cont + 1
}
else {
cat("Option not in the list:\\n")
}
}
}
if (length(vars) > 1L) {
data <- data[, vars]
}else if(ncol(data) > 1L && length(vars)==1L){
data <- data.frame(data[, vars])
names(data) <- vars
} else {
data <- data.frame(data)
names(data) <- vars
}
if (mve) {
NDquntil <- function(nD, level) {
n <- floor(nD * level)
if (n > nD)
n <- nD
return(n)
}
n <- NDquntil(dim(data)[1], level)
cent_var <- MASS::cov.rob(data, quantile.used = n,method = "mve")
centroid <- cent_var$center
vari <- cent_var$cov
}
else {
if(length(vars)>1L) {
centroid <- colMeans(data,na.rm = TRUE)
} else{
centroid <- mean(data,na.rm = TRUE)
}
vari <- stats::cov(data)
}
# Ellipsoid volume
ellip_vol <- function(n, axis_length) {
term1 <- 2 * pi^(n/2)
term2 <- n * gamma(n/2)
term3 <- prod(axis_length)
term4 <- (term1/term2) * term3
return(term4)
}
sigmaI <- solve(vari)/stats::qchisq(level, df = dim(data)[2])
sigIEigenSys <- eigen(sigmaI)
sigIEval <- sigIEigenSys$values
sigIEvec <- sigIEigenSys$vectors
stds <- 1/sqrt(sigIEval)
axis_length <- NULL
for (i in 1:dim(sigmaI)[1]) {
axis_length[i] <- stds[i] * 2
}
names(axis_length) <- letters[1:dim(vari)[1]]
n <- dim(vari)[1]
vol2 <- ellip_vol(n, axis_length/2)
axis_coordinates <- list()
for (i in 1:dim(vari)[1]) {
assign(paste0("l", i, "_inf"),
centroid - sigIEvec[,i] * stds[i])
assign(paste0("l", i, "_sup"),
centroid + sigIEvec[,i] * stds[i])
coord_matrix <- matrix(c(eval(parse(text = paste0("l",
i, "_sup"))),
eval(parse(text = paste0("l", i, "_inf")))),
byrow = T, nrow = 2)
colnames(coord_matrix) <- names(centroid)
rownames(coord_matrix) <- paste0("vec_", 1:2)
axis_coordinates[[i]] <- coord_matrix
}
return(list(centroid = centroid,
covariance = vari,
niche_volume = vol2,
SemiAxis_length = axis_length/2,
axis_coordinates = axis_coordinates))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.