#' Simulate Data for MixModelPack
#'
#' Function to simulate exposure, covariate, and response data for up to 1000 observations
#'
#' @param n sample size
#' @param Xdat Xdat exposure data matrix loaded from package mmpack
#'
#' @return list with components
#' \itemize{
#' \item Y: response data
#' \item X: exposure data
#' \item W: covariate data
#' \item h: exposure-response function
#' \item active: active main effects
#' \item active.ints: active interactions
#' }
#'
#' @export
simexpodat <- function(n, Xdat){
if(n > 1000) stop("sample size cannot be larger than 1000")
W <- matrix(rnorm(n*10), n, 10)
samps <- sample(1:1000, n, replace = FALSE)
X <- Xdat[samps,]
X <- apply(X,2,scale)
gamma <- rnorm(ncol(W), 0, 1)
e.vec <- c(3,4,5,7)
a <- e.vec[1]
b <- e.vec[2]
c <- e.vec[3]
d <- e.vec[4]
h <- 3*X[,a] - 2*X[,b] + 2.5*X[,c] - 4*X[,d] +
.3*X[,a]*X[,b] - .6*X[,c]*X[,d]
Y <- h + W%*%gamma + rnorm(nrow(X),0,1)
active <- sort(e.vec)
ints <- combn(1:ncol(X), 2)
active.ints1 <- which(colSums(apply(ints, 2, function(x) {x %in% c(a,b)})) == 2)
active.ints2 <- which(colSums(apply(ints, 2, function(x) {x %in% c(c,d)})) == 2)
active.ints <- sort(c(active.ints1, active.ints2))
return(list(Y = Y, X = X, W = W,
h = h, active = active, active.ints = active.ints))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.