#' @title Rollup Channel Unit Wood Data
#'
#' @description Summarize individual wood piece data (e.g. from \code{otg_type =} "Wood_2.csv") at
#' the channel unit scale
#'
#' @author Mike Ackerman, Richie Carmichael, and Kevin See
#'
#' @param wood_df data.frame of `otg_type =` "Wood_2.csv" containing the individual
#' wood data to be summarized by channel units
#' @param fix_nas if any of the length or diameter measurement for individual wood pieces are missing
#' i.e.,`NA`, would you like to fill them in? Default is `TRUE`, in which
#' case the `NA` values will be imputed using function `impute_missing_values()`
#' @param impute_cols character vector of column names that should be imputed, if `fix_nas == TRUE`
#' @param ... other arguments to `impute_missing_values()`
#'
#' @import dplyr
#' @export
#' @return a data.frame summarizing wood at the channel unit scale
rollup_cu_wood = function(wood_df = NULL,
fix_nas = TRUE,
impute_cols = c('length_m',
'diameter_m'),
...) {
stopifnot(!is.null(wood_df))
# get class of each impute_cols
cols_class = wood_df %>%
dplyr::select(dplyr::any_of(impute_cols)) %>%
sapply(class)
# if any impute_cols are character vectors, turn them into factors
if(sum(cols_class == "character") > 0) {
wood_df = wood_df %>%
dplyr::mutate_at(vars(dplyr::any_of(names(cols_class)[cols_class == "character"])),
list(as.factor))
}
# how many missing values are there in impute_cols?
n_nas = wood_df %>%
dplyr::select(dplyr::any_of(impute_cols)) %>%
is.na() %>%
sum()
if( fix_nas == TRUE & n_nas == 0 ) cat("No missing values in impute_cols of wood_df\n")
# fix missing length and diameter values
if( fix_nas == TRUE & n_nas > 0 ) {
cat("Imputing some missing values in wood_df\n")
# use default values
fix_df = impute_missing_values(wood_df,
col_nm_vec = impute_cols,
...)
wood_df = fix_df
} # end if( fix_nas == TRUE & n_nas > 0 ) loop
# now start data rollup
return_df = wood_df %>%
dplyr::select(-(creation_date:editor)) %>%
dplyr::mutate(piece_area_m2 = length_m * diameter_m,
piece_vol_m3 = length_m * (diameter_m/2)^2 * pi) %>%
dplyr::group_by(parent_global_id) %>%
dplyr::summarise(lwd_n = length(parent_global_id),
lwd_area_m2 = sum(piece_area_m2),
lwd_vol_m3 = sum(piece_vol_m3),
lwd_n_wet = length(parent_global_id[wet == "Yes"]),
lwd_area_wet_m2 = sum(piece_area_m2[wet == "Yes"]),
lwd_vol_wet_m3 = sum(piece_vol_m3[wet == "Yes"]),
lwd_n_cf = length(parent_global_id[channel_forming == "Yes"]),
lwd_area_cf_m2 = sum(piece_area_m2[channel_forming == "Yes"]),
lwd_vol_cf_m3 = sum(piece_vol_m3[channel_forming == "Yes"]),
lwd_n_bal = length(parent_global_id[ballasted == "Yes"]),
lwd_area_bal_m2 = sum(piece_area_m2[ballasted == "Yes"]),
lwd_vol_bal_m3 = sum(piece_vol_m3[ballasted == "Yes"])) %>%
dplyr::mutate_at(vars(ends_with("_m2")), round, 2) %>%
dplyr::mutate_at(vars(ends_with("_m3")), round, 2)
return(return_df)
} # end rollup_cu_wood()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.