R/GADAG2_Run.R

Defines functions GADAG2_Run

Documented in GADAG2_Run

#########################################
### Main code for running GADAG2
##
##' @title Run GADAG2
##' @description Function to run GADAG2, an algorithm that aims at inferring large sparse directed acyclic graphs
##' based on an observation sample X, by minimizing the penalized negative log-likelihood with a convex program embedded in a genetic algorithm.
##' @details This function returns as a primary output \code{G.best}, the adjacency matrix of the inferred graph. This matrix is computed thanks
##' to its decomposition (\code{P.best}, \code{T.best}).
##'
##' The values of the inputs \code{n.gen}, \code{max.eval} and \code{pop.size} largely influence the algorithm inference capability,
##' but also its computational cost. As a rule-of-thumb, we recommend setting \code{pop.size} between 1 to 10 times the number of nodes,
##' and \code{n.gen} between 10 to 250 times \code{pop.size}. \code{tol.Shannon} may be decreased in case of premature stop. The other
##' parameters should only be modified with care.
##'
##' @param X Design matrix, with samples (n) in rows and variables (p) in columns.
##' @param lambda Parameter of penalization (>0).
##' @param threshold Thresholding value for the estimated edges.
##' @param GADAG2.control A list containing parameters for controlling GADAG2 (termination conditions and inherent parameters of the Genetic Algortihm).
##' Some parameters (n.gen, max.eval and pop.size) are particularly critical for reducing the computational time.
##' \itemize{
##' \item{\code{n.gen}}{ maximal number of population generations (>0),}
##' \item{\code{pop.size}}{ initial population size for the genetic algorithm (>0),}
##' \item{\code{max.eval}}{ overall maximal number of calls of the evaluation function (>0, should be of the order of \code{n.gen}*\code{pop.size}),}
##' \item{\code{tol.Shannon}}{ threshold for the Shannon entropy (>0),}
##' \item{\code{p.xo}}{ crossover probability of the genetic algorithm (between 0 and 1),}
##' \item{\code{p.mut}}{ mutation probability of the genetic algorithm (between 0 and 1).}
##' }
##' @rawNamespace export(GADAG2_Run)
##' @rawNamespace import(igraph)
##' @rawNamespace import(MASS)
##' @rawNamespace import(Rcpp)
##' @rawNamespace import(parallel)
##' @rawNamespace importFrom(Rcpp, evalCpp)
##' @rawNamespace useDynLib(GADAG2)
##' @param grad.control A list containing the parameters for controlling the inner optimization, i.e. the gradient descent.
##' \itemize{
##' \item{\code{tol.obj.inner}}{ tolerance (>0),}
##' \item{\code{max.ite.inner}}{ maximum number of iterations (>0).}
##' }
##' @param ncores Number of cores (>0, depending on your computer).
##' @param print.level 0 no print, 1 some info on the genetic algorithm behaviour are printed.
##' @param return.level 0 only best solution is returned, 1 evolution of the current best solution and statistics on the population fitness values are also returned.
##' @return A list with the following elements:
##' \itemize{
##' \item{\code{f.best}}{ Best fitness value.}
##' \item{\code{P.best}}{ Best node order (vector of length p).}
##' \item{\code{T.best}}{ Corresponding best edges values (vector of length p).}
##' \item{\code{G.best}}{ Best graph (matrix form).}
##' \item{\code{f.best.evol}}{ Evolution of the best fitness value across the iterations (if return.level=1).}
##' \item{\code{P.best.evol}}{ Evolution of the best node order across the iterations (if return.level=1).}
##' \item{\code{T.best.evol}}{ Evolution of the best edges values across the iterations (if return.level=1).}
##' \item{\code{fmin.evol}}{ Evolution of the minimal fitness value of the population across the iterations (if return.level=1).}
##' \item{\code{fmean.evol}}{ Evolution of the averaged fitness value of the population across the iterations (if return.level=1).}
##' \item{\code{fp10.evol}}{ Evolution of the quantiles of the fitness value across the iterations (if return.level=1).}
##' \item{\code{fp90.evol}}{ Evolution of the quantiles of the fitness value across the iterations (if return.level=1).}
##' \item{\code{Shannon.evol}}{ Evolution of the Shannon entropy of the population across the iterations (if return.level=1).}
##' }
##' @seealso \code{\link{GADAG2}}, \code{\link{GADAG2_CV}}, \code{\link{GADAG2_Run}}, \code{\link{GADAG2_Analyze}}.
##' @author \packageAuthor{GADAG2}
##'
##'@references
##' M. Champion, V. Picheny, M. Vignes (2017), Inferring large graphs using l-1 penalized likelihood,
##' 'https://arxiv.org/pdf/1507.02018.pdf'. \cr \cr
##'
##' @examples
##'  #############################################################
##'  # Loading toy data
##'  #############################################################
##'  data(toy_data)
##'  # toy_data is a list of two matrices corresponding to a "star"
##'  # DAG (node 1 activates all other nodes):
##'  # - toy_data$X is a 100x10 design matrix
##'  # - toy_data$G is the 10x10 adjacency matrix (ground trough)
##'
##'  #############################################################
##'  # Running GADAG2
##'  #############################################################
##'  # Simple run, with only the penalty term specified
##'  GADAG2_results <- GADAG2_Run(X=toy_data$X, lambda=0.1)
##'  print(GADAG2_results$G.best) # optimal adjacency matrix graph
##'
##'  # Expensive run with many evaluations if we refine the
##'  # termination conditions
##'  \dontrun{
##'  n.gen <- 1e10 # we allow a very large number of iterations
##'  tol.Shannon <- 1e-10 # the entropy of Shannon of the population
##'                       # has to be very small
##'  pop.size <- 5*ncol(toy_data$G) # this is usually a good
##'                                 # population size
##'  max.eval <- n.gen * pop.size # maximal number of nested
##'                               # evaluation
##'  GADAG2_results <- GADAG2_Run(X=toy_data$X, lambda=0.1,
##'       GADAG2.control=list(n.gen=n.gen, tol.Shannon=tol.Shannon,
##'                          pop.size = pop.size, max.eval=max.eval))
##'  print(GADAG2_results$G.best) # optimal adjacency matrix graph
##'  }
##'
##'  # Expensive run if we also increase the population size
##'  \dontrun{
##'  pop.size <- 10*ncol(toy_data$G)
##'  GADAG2_results <- GADAG2_Run(X=toy_data$X, lambda=0.1,
##'       GADAG2.control=list(pop.size=pop.size))
##'  print(GADAG2_results$G.best) # optimal adjacency matrix graph
##'  }
##'
##'  # You can have more information about the evolution of the
##'  # algorithm by turning return.level on
##'  \dontrun{
##'  return.level <- 1
##'  GADAG2_results <- GADAG2_Run(X=toy_data$X, lambda=0.1, return.level = return.level)
##'  print(GADAG2_results$f.best.evol) # this shows the evolution of the fitness
##'                                   # across the iterations
##'  }
GADAG2_Run <- function(X, lambda=0.1, threshold=0.1,
                      GADAG2.control = list(n.gen=250, tol.Shannon=1e-6, max.eval=1e7,pop.size=5*ncol(X), p.xo=.25, p.mut=.05),
                      grad.control = list(tol.obj.inner=1e-6, max.ite.inner=50),
                      ncores=1,print.level=0, return.level=0) {

  #############################################################
  # INPUTS:
  # X: design matrix (size n*p)
  # lambda: penalty
  # threshold: thresholding value for the edges
  # pop.size: initial population size for GA
  # p.xo: crossover probability
  # p.mut: mutation probability
  # n.gen: maximal number of population generations
  # tol.Shannon: termination threshold for the Shannon entropy
  # max.eval: maximal number of objective function evaluations (i.e. gradient descents)
  # tol.obj.inner: tolerance for the inner optimization (gradient descent)
  # max.ite.inner: maximum number of iterations for the inner optimization (gradient descent)
  # print.level: 0 no print, 1 some info on the GA behaviour
  # return.level: 0 only best solution is returned,
  #               1 evolution of the current best solution and statistics on the population fitness values are also returned
  #
  # OUTPUTS:
  # G.best: best graph
  # P.best: best individual (node order)
  # T.best: corresponding best triangular matrix (edges values)
  # f.best: best fitness value
  # More outputs can be provided (see return.level)
  #############################################################

  ############## Initialisation step ###############
  if (is.null(GADAG2.control$n.gen)){
    n.gen <- 250
  } else {
    n.gen <- GADAG2.control$n.gen
  }
  if (is.null(GADAG2.control$max.eval)){
    max.eval <- 1e4
  } else {
    max.eval <- GADAG2.control$max.eval
  }
  if (is.null(GADAG2.control$tol.Shannon)){
    tol.Shannon <- 1e-6
  } else {
    tol.Shannon <- GADAG2.control$tol.Shannon
  }
  if (is.null(GADAG2.control$pop.size)){
    pop.size <- 10
  } else {
    pop.size <- GADAG2.control$pop.size
  }
  if (is.null(GADAG2.control$p.xo)){
    p.xo <- 0.25
  } else {
    p.xo <- GADAG2.control$p.xo
  }
  if (is.null(GADAG2.control$p.mut)){
    p.mut <- 0.05
  } else {
    p.mut <- GADAG2.control$p.mut
  }
  if (is.null(grad.control$tol.obj.inner)){
    tol.obj.inner <- 1e-6
  } else {
    tol.obj.inner <- grad.control$tol.obj.inner
  }
  if (is.null(grad.control$max.ite.inner)){
    max.ite.inner <- 50
  } else {
    max.ite.inner <- grad.control$max.ite.inner
  }
  grad.control <- list(tol.obj.inner= tol.obj.inner,max.ite.inner=max.ite.inner)

  ##### Create and evaluate initial population #####
  if (max.ite.inner < 0){
    stop("grad.control$max.ite.inner should be non-negative.")
  }

  n <- dim(X)[1]
  p <- dim(X)[2]
  XtX <- crossprod(X)

  Pop       <- create.population(p, pop.size)
  evalTandf <- evaluation(Pop, X, XtX, lambda, grad.control=grad.control, ncores=ncores)
  f.pop     <- evalTandf$f
  T.pop     <- evalTandf$Tpop
  f.count   <- pop.size

  ##### Initialize all indicators ####
  Shannon.val <- rep(0,p)
  for (j in (1:p)){
    frac <- colMeans(Pop==j)
    h <- frac*log(frac)
    h[is.nan(h)] <- 0
    Shannon.val[j] <- -sum(h)
  }

  pop.best        <- which.min(f.pop)
  f.best.alltimes <- min(f.pop)
  P.best.alltimes <- Pop[pop.best,]
  T.best.alltimes <- T.pop[pop.best,]

  if (return.level != 0) {
    fmin.pop.save  <- rep(0, n.gen)
    fmean.pop.save <- rep(0, n.gen)
    fp10.pop.save  <- rep(0, n.gen)
    fp90.pop.save  <- rep(0, n.gen)

    fmin.pop.save[1]  <- min(f.pop)
    fmean.pop.save[1] <- mean(f.pop)
    fp10.pop.save[1]  <- quantile(f.pop, probs = .1)
    fp90.pop.save[1]  <- quantile(f.pop, probs = .9)

    f.best.alltimes.save  <- rep(0, n.gen)
    P.best.alltimes.save  <- matrix(data = 0, nrow = n.gen, ncol = p)
    T.best.alltimes.save  <- matrix(data = 0, nrow = n.gen, ncol = p^2)

    f.best.alltimes.save[1]  <- f.best.alltimes
    P.best.alltimes.save[1,] <- P.best.alltimes
    T.best.alltimes.save[1,] <- T.best.alltimes

    Shannon.save   <- matrix(data = 0, nrow = n.gen, ncol = p)
    Shannon.save[1,]  <- Shannon.val
  }

  ##### Main Loop #####
  k <- 1
  if ((print.level != 0) ) cat("Nb gen | best f |  average (sd) f in pop | Shannon | f count \n")

  while (k < n.gen && sum(Shannon.val) > tol.Shannon && f.count<max.eval){
    if (print.level != 0) cat(k, f.best.alltimes, mean(f.pop), "(",sd(f.pop),")", sum(Shannon.val), f.count, "\n")

    ##### Selection operator #####
    I <- selection(Pop, f.pop)

    ##### Cross-over + mutation + evaluation on selected Population ####
    Results.crossover   <- crossover(Pop=Pop[I,],p.xo=p.xo)
    Children <- Results.crossover$Children
    I.cross <- Results.crossover$I.cross

    if (length(I.cross)>1){
      Children   <- mutation(Children, p.mut=p.mut)
      evalTandfe <- evaluation(Pop=Children, X=X, XtX=XtX, lambda=lambda, grad.control=grad.control, ncores=ncores)
      I.cross <- I[I.cross]
      Pop[I.cross,]   <- Children
      f.pop[I.cross]  <- evalTandfe$f
      T.pop[I.cross,] <- evalTandfe$Tpop
    }

    #### Replace worst by best parent ####
    pop.worst         <- which.max(f.pop)
    f.pop[pop.worst]  <- f.best.alltimes
    Pop[pop.worst,]   <- P.best.alltimes
    T.pop[pop.worst,] <- T.best.alltimes

    #### Update counters ####
    f.count <- f.count + length(I.cross) + p-1
    k <- k + 1

    Shannon.val <- rep(0,p)
    for (j in (1:p)){
      frac <- colMeans(Pop==j)
      h <- frac*log(frac)
      h[is.nan(h)] <- 0
      Shannon.val[j] <- -sum(h)
    }

    pop.best <- which.min(f.pop)
    if (min(f.pop) < f.best.alltimes) {
      f.best.alltimes <- min(f.pop)
      P.best.alltimes <-  Pop[pop.best,]
      T.best.alltimes <- T.pop[pop.best,]
    }

    if (return.level != 0) {
      fmin.pop.save[k]  <- min(f.pop)
      fmean.pop.save[k] <- mean(f.pop)
      fp10.pop.save[k]  <- quantile(f.pop, probs = .1)
      fp90.pop.save[k]  <- quantile(f.pop, probs = .9)

      f.best.alltimes.save[k]  <- f.best.alltimes
      P.best.alltimes.save[k,] <- P.best.alltimes
      T.best.alltimes.save[k,] <- T.best.alltimes

      Shannon.save[k,]  <- Shannon.val
    }
  }
  if (print.level != 0) cat(k, f.best.alltimes, mean(f.pop), "(",sd(f.pop),")", sum(Shannon.val), f.count, "\n")

  # END OF MAIN LOOP
  P <- chrom(P.best.alltimes)
  T.best.alltimes[abs(T.best.alltimes)<threshold] <- 0
  T <- matrix(T.best.alltimes,p,p)
#  T[abs(T)<threshold] <- 0
  G.best <- P %*% T %*% t(P)

  #############################################################
  #############################################################
  if (return.level > 0) {
    return(list(f.best=f.best.alltimes, P.best=P.best.alltimes, T.best=T.best.alltimes,G.best=G.best,
                f.best.evol=f.best.alltimes.save[1:k], P.best.evol=P.best.alltimes.save[1:k,], T.best.evol=T.best.alltimes.save[1:k,],
                fmin.evol=fmin.pop.save[1:k], fmean.evol=fmean.pop.save[1:k], fp10.evol=fp10.pop.save[1:k],
                fp90.evol=fp90.pop.save[1:k],
                Shannon.evol=Shannon.save[1:k,]))
  } else {
    return(list(f.best=f.best.alltimes, P.best=P.best.alltimes, T.best=T.best.alltimes, G.best=G.best))
  }
}
magalichampion/GADAG documentation built on May 21, 2019, 11:04 a.m.