examples-scripts/example_coverage_optimized.R

library("muxViz")
library(igraph)
library(RColorBrewer)
library(viridis)
library(tictoc)

set.seed(1)

#Network setup
Layers <- 3
Nodes <- 100
layerCouplingStrength <- 0.1
networkOfLayersType <- "categorical"
isDirected <- F

colors <- brewer.pal(8, "Set2")


cat("####################################\n")
cat("# Multiplex navigability\n")
cat("####################################\n\n")

SYSTEMS <- c("BA+BA", "BA+ER", "ER+ER")
TAUS <- 10^seq(-1,3,0.05)

cov.res <- data.frame()

for(system.type in SYSTEMS){
    #Generate an edge-colored network
    nodeTensor <- list()
    g.list <- list()

    cat(paste("### System", system.type, "\n"))

    cat("+ Creating layers...\n")

    for(l in 1:Layers){
        if(system.type=="BA+ER"){
            if(l %% 2 ==0){
                g.list[[l]] <- igraph::barabasi.game(Nodes, m=2, directed=F)
            }else{
                g.list[[l]] <- igraph::erdos.renyi.game(Nodes, 2*log(Nodes)/Nodes, directed=F)
            }
        }

        if(system.type=="BA+BA"){
            g.list[[l]] <- igraph::barabasi.game(Nodes, m=2, directed=F)
        }

        if(system.type=="ER+ER"){
            g.list[[l]] <- igraph::erdos.renyi.game(Nodes, 2*log(Nodes)/Nodes, directed=F)
        }

        igraph::E(g.list[[l]])$weight <- 1

        #To make it weighted, with random weights, uncomment this:
        #igraph::E(g.list[[l]])$weight <- runif(length(E(g.list[[l]])), 0.5, 1)
        
        nodeTensor[[l]] <- igraph::get.adjacency( g.list[[l]], attr="weight" )
    }

    cat("+ Building supra-matrices...\n")

    #Build the interconnected multiplex transition matrix
    layerTensor <- BuildLayersTensor(Layers, OmegaParameter=layerCouplingStrength, MultisliceType=networkOfLayersType)
    SupraA <- BuildSupraAdjacencyMatrixFromEdgeColoredMatrices(nodeTensor, layerTensor, Layers, Nodes)
    SupraT <- BuildSupraTransitionMatrixFromSupraAdjacencyMatrix(SupraA,Layers,Nodes, Type="classical")

    #Build the non-interconnected multiplex transition matrix
    T.mux <- BuildTransitionMatrixFromEdgeColoredMatrices(nodeTensor, Layers, Nodes)

    #Build the aggregate representation of the multiplex
    A.agg <- GetAggregateMatrix(nodeTensor, Layers, Nodes)

    #Build the aggregate's transition matrix (this is atrick, but it can be confusing, maybe deserves a single-layer function)
    T.agg <- BuildTransitionMatrixFromSingleLayer(A.agg, Nodes)
    #L.agg <- speye(Nodes) - T.agg

    cat("+ Coverage multilayer...\n")

    #Uncomment this if you want to exact calculation as well 
    # tic()
    # cov.mul <- GetCoverageEvolutionMultilayer(SupraT, Layers, Nodes, 10^seq(-1,3,0.05))
    # cov.mul$type <- "Exact"
    # cov.mul$system <- system.type
    # cov.res <- rbind(cov.res, cov.mul)
    # toc()

    DisconnectedNodes <- igraph::clusters(igraph::graph.adjacency(SupraA))$no

    tic()
    cov.mul.appr <- GetCoverageEvolutionMultilayer(SupraT, Layers, Nodes, TAUS, Approximate=T, Approximate.disconnected=DisconnectedNodes)
    cov.mul.appr$type <- "Approximate"
    cov.mul.appr$system <- system.type
    cov.mul.appr$method <- "Multilayer"
    cov.res <- rbind(cov.res, cov.mul.appr)
    toc()

    cat("+ Coverage multiplex...\n")

    DisconnectedNodes <- igraph::clusters(igraph::graph.adjacency(SupraA))$no

    tic()
    cov.mul.appr <- GetCoverageEvolutionEdgeColored(T.mux, Layers, Nodes, TAUS, Approximate=T, Approximate.disconnected=DisconnectedNodes)
    cov.mul.appr$type <- "Approximate"
    cov.mul.appr$system <- system.type
    cov.mul.appr$method <- "Multiplex"
    cov.res <- rbind(cov.res, cov.mul.appr)
    toc()

    cat("+ Coverage of the aggregate network...\n")

    DisconnectedNodes <- igraph::clusters(igraph::graph.adjacency(A.agg))$no

    tic()
    cov.mul.appr <- GetCoverageEvolutionSingleLayer(T.agg, Nodes, TAUS, Approximate=T, Approximate.disconnected=DisconnectedNodes)
    cov.mul.appr$type <- "Approximate"
    cov.mul.appr$system <- system.type
    cov.mul.appr$method <- "Aggregate"
    cov.res <- rbind(cov.res, cov.mul.appr)
    toc()
}

#Calculations might lead to complex numbers for coverage, with zero imaginary part.
#Check, and if not the case raise an error
if( any(abs(Im(cov.res$rho))>1e-12) ){
    stop("ERROR! Unexpected imaginary numbers.")
}else{
    cov.res$rho <- Re(cov.res$rho)
}


p1 <- ggplot(cov.res, aes(tau,rho, group=system, color=system)) + theme_minimal() + theme(panel.grid=element_blank()) +
     geom_line() + geom_point(size=0.5, aes(shape=system)) + 
     scale_x_log10() + 
     scale_color_manual(values=colors) + 
     xlab("Diffusion time") + ylab("Coverage") +
     facet_wrap(method~., ncol=1)

print(p1)
manlius/muxViz documentation built on March 1, 2023, 10:28 a.m.