#' CO2 Emissions by Forest Loss
#'
#' Calculation of the CO2 emissions resulting from forest loss in a time series.
#' It uses information on the occurence of forest loss and the amount of CO2
#' present in the biomass to calculate the sum of CO2 emissions on a yearly basis.
#'
#' @param inputCO2Map A \code{RasterLayer} object with values indicating the
#' the amount of CO2 equivalent present in the biomass of a given pixel.
#' The annual sum of CO2 emissions per feature in the \code{studysite} object
#' is calculated based on this data set.
#' @param inputLossMap A \code{RasterLayer} object with values indicating the
#' year tree cover was lost. The annual area of tree cover lost is calculated
#' based on the values found in this data set.
#'
#' @return The studysite object with it's attribute table being ammended by the
#' results of the calculation. Additionally, a csv file containing the \code{polyName}
#' attribute as well as the results of the calculation can be saved to disk.
#'
#' @note This function relies heavily on parallization, indicating the
#' importance of both, a high number of CPUs and large enough RAM.
#' @author Darius Görgen (MapTailor Geospatial Consulting GbR) \email{info@maptailor.net}
#' \cr
#' \emph{Maintainer:} MAPME-Initiative \email{contact@mapme-initiative.org}
#' \cr
#' \emph{Contact Person:} Dr. Johannes Schielein
#' \cr
#' \emph{Copyright:} MAPME-Initiative
#' \cr
#' \emph{License:} GPL-3
#'
#' @examples
#' library(sf)
#' library(raster)
#' library(mapme.forest)
#'
#' aoi = st_read(system.file("extdata", "aoi_polys.gpkg", package = "mapme.forest"))
#' yearlyRaster = stack(system.file("extdata", "pkgTest_yearlyCover.tif",
#' package = "mapme.forest"))
#' lossRaster = raster(system.file("extdata", "pkgTest_lossyear.tif",
#' package = "mapme.forest"))
#' co2Raster = raster(system.file("extdata", "pkgTest_co2_emission.tif",
#' package = "mapme.forest"))
#'
#' result = CO2Calc(inputForestMap = yearlyRaster,
#' inputLossMap = lossRaster,
#' inputCO2Map = co2Raster,
#' studysite = aoi[1,],
#' polyName = "id",
#' ncores = 1,
#' saveCSV = FALSE,
#' years = 2000:2018)
#' str(result)
#'
#' @export CO2Calc
#' @name CO2Calc
#' @inheritParams AreaCalc
#' @import raster
#' @importFrom exactextractr exact_extract
#' @import sf
#' @importFrom tibble rownames_to_column
#' @importFrom dplyr left_join
#' @importFrom parallel mclapply
#' @importFrom utils write.csv
CO2Calc <- function (inputForestMap=NULL,
inputLossMap=NULL,
inputCO2Map=NULL,
studysite=NULL,
ncores=1,
polyName=NULL,
saveCSV=FALSE,
years=2001:2018) {
#--------------------------- CHECK FOR ERROS IN INPUT -----------------------#
warning("IMPORTANT WARNING: The use of the CO2 emission layer during analysis is currently discouraged.
Several routines need to be adapted since the usage of a new data set by Harris et al (2021) (see https://www.nature.com/articles/s41558-020-00976-6)
Check out https://github.com/mapme-initiative/mapme.forest/issues/7 to recieve information if the issue has been solved.", immediate. = TRUE)
if (!class(inputForestMap)[1] %in% c("RasterLayer", "RasterStack", "RasterBrick")){
stop(paste0("No valid raster object specified in 'inputForestMap'.\n",
"Must be of class 'RasterLayer','RasterStack'or 'RasterBrick').\n",
"See ?CO2Calc for details."))
}
if(nlayers(inputForestMap) != length(years)){
stop(paste0("Number of layers in inputForestMap and length of years differ. \n",
"Make sure that for each year you specify a layer is present in inputForestMap."))
}
if (!class(inputLossMap)[1] == "RasterLayer"){
stop(paste0("inputLossMap is not a single RasterLayer.\n", "It must be of class 'RasterLayer').\n","See ?CO2Calc for details."))
}
if (!class(inputCO2Map)[1] == "RasterLayer"){
stop(paste0("inputCO2Map is not a single RasterLayer.\n", "It must be of class 'RasterLayer').\n","See ?CO2Calc for details."))
}
if (class(studysite)[1] != "sf"){
stop(paste0("No valid spatial object specified in 'studysite'.\n",
"Must be of class 'sf'.",
"See ?CO2Calc for details."))
}
if (nrow(studysite) == 0){
stop(paste0("A spatial object with 0 features was specified.\n",
"At least one feature needs to be present.\n",
"See ?CO2Calc for details."))
}
if (!polyName %in% names(studysite)){
stop(paste0("There is no column named ", polyName," in the aoi object. Please check your \n",
"input for polyName."))
}
if (length(studysite[[polyName]]) != length(unique(studysite[[polyName]]))){
stop(paste0("Names for the spatial features in specified column are not unique.\n",
"Specify a column name in the 'polyName' object which has unique values for each feature.\n",
"See ?CO2Calc for details."))
}
if (st_crs(studysite) != st_crs(inputForestMap)){
stop(paste0("The CRS of the 'studysite' and 'inputForestMap' objects are not identical.\n",
"Reproject either of these to the CRS of the other (Preferebly reproject 'studysite')."))
}
if (st_crs(studysite) != st_crs(inputLossMap)){
stop(paste0("The CRS of the 'studysite' and 'inputLossMap' objects are not identical.\n", "Reproject either of these to the CRS of the other (Preferebly reproject 'studysite')."))
}
if (st_crs(studysite) != st_crs(inputCO2Map)){
stop(paste0("The CRS of the 'studysite' and 'inputCO2Map' objects are not identical.\n",
"Reproject either of these to the CRS of the other (Preferebly reproject 'studysite')."))
}
if(saveCSV != FALSE){
if(!file.exists(saveCSV)){
stop(paste0("The directory you specified does not exist.\n",
"Specify a valid directory for .csv output.\n",
"See ?CO2Calc for details."))
}
}
#----------------------------- Zonal Stats -----------------------------#
# splitting studysite object to list for parallel processing
studysiteList = lapply(1:nrow(studysite), function(i){
return(studysite[i, ])
})
unis = sort(unique(values(inputLossMap)))
if (length(unis) > 0){
if (ncores == 1){ # check for sequential processing
CO2Stats = lapply(studysiteList, function(feature){
co2_calc_seq(inputForestMap = inputForestMap,
inputLossMap = inputLossMap,
inputCO2Map = inputCO2Map,
studysite = feature,
unis = unis)
})
}
if (ncores > 1){
# calculate CO2 emissions for each single observation year
CO2Stats = mclapply(studysiteList, function(feature){
co2_calc_seq(inputForestMap = inputForestMap,
inputLossMap = inputLossMap,
inputCO2Map = inputCO2Map,
studysite = feature,
unis = unis)
}, mc.cores = ncores)
}
#-------------------------------- PREPARING OUTPUT --------------------------#
CO2Stats = as.data.frame(do.call("rbind", CO2Stats))
colnames(CO2Stats) <- paste0("co2_",unis+2000)
# add missing years with 0
for (i in years){
if (!i %in% (unis + 2000) )
CO2Stats[paste0("co2_", i)] = 0
}
# reorder columns to mirror years
index = unlist(lapply(years, function(i) pmatch(paste0("co2_",i), names(CO2Stats))))
CO2Stats = CO2Stats[ , index]
# add unique identifier to loss stats
CO2Stats[ ,polyName] = unlist(st_drop_geometry(studysite)[polyName])
} else { # in case no losses occured
CO2Stats = as.data.frame(matrix(nrow=nrow(studysite), ncol=length(years)+1, data = 0))
names(CO2Stats) = c(polyName, paste0("co2_", years, sep=""))
CO2Stats[polyName] = st_drop_geometry(studysite)[polyName]
}
# Save the results if specified by user
if (saveCSV != FALSE){
write.csv(CO2Stats, file=paste0(saveCSV,"/C02Statistics.csv"), row.names = FALSE)
}
studysite = suppressMessages(left_join(studysite, CO2Stats))
return(studysite)
}# end of function
#' CO2 emission calculation single mode (Helper Function)
#'
#' @param inputForestMap A raster object
#' @param inputLossMap A raster layer object
#' @param inputCO2Map A raster layer object
#' @param studysite A sf object
#' @param unis A numeric vector indicating yearly cell values
#'
#' @return A data.frame object with Yearly sums of co2 emissions by tree cover loss
#' @export co2_calc_seq
#' @keywords internal
#' @importFrom sf st_transform
#' @importFrom raster projection crop stack
#' @importFrom exactextractr exact_extract
#' @author Darius Görgen (MapTailor Geospatial Consulting GbR) \email{info@maptailor.net}
#' \cr
#' \emph{Maintainer:} MAPME-Initiative \email{contact@mapme-initiative.org}
#' \cr
#' \emph{Contact Person:} Dr. Johannes Schielein
#' \cr
#' \emph{Copyright:} MAPME-Initiative
#' \cr
#' \emph{License:} GPL-3
co2_calc_seq <- function(inputForestMap, inputLossMap, inputCO2Map, studysite, unis){
studysite2 <- st_transform(studysite, projection(inputLossMap))
# create dummy raster for current feature extent
ratio = coverratio(inputForestMap, studysite2)
if(ratio > 10){
lossyear = crop(inputLossMap, studysite2)
treecover = crop(inputForestMap, studysite2)
emission = crop(inputCO2Map, studysite2)
} else {
lossyear = inputLossMap
treecover = inputForestMap
emission = inputCO2Map
rm(inputForestMap); gc()
rm(inputLossMap); gc()
rm(inputCO2Map); gc()
}
# set all pixels to 0 which are no forest in treecover
index = sum(treecover)
lossyear[index == 0] = 0
emission[index == 0] = 0
rm(treecover, index); gc()
# calculate CO2 emissions for each single observation year
DummyAnLoss = stack(lapply(unis, function(i){
# exclude other loss years
index = lossyear
index[lossyear != i] = 0
rasterReturn = emission
rasterReturn[index == 0] = 0
# mask co2 raster by index
return(rasterReturn)
}))
results <- exact_extract(DummyAnLoss, studysite2, "sum")
rm(DummyAnLoss, studysite2, lossyear, emission) ; gc()
return(results)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.