library(tidyverse)
### source all relevant scripts
scripts=paste0("R/",list.files("R/"))
lapply(scripts,source)
### create dummy data
n=1000
dat=data.frame(x1=rnorm(n =n,mean = 0,sd = 1),
x2=rnorm(n =n,mean = 0,sd = 1),
x3=rnorm(n =n,mean = 0,sd = 1),
x4=rnorm(n =n,mean = 0,sd = 1)
)
### add binary y variable
dat$y=sample(c(0,1),size = n,replace = T)
### add gaussian y variable
dat$y=rnorm(n =n,mean = 0,sd = 1)
### add categorical factor variable y variable
dat$cat=factor(sample(c("Case","Control"),size = n,replace = T))
# Create table one --------------------------------------------------------
rowvar_list=c("x1","x2","x3","x4")
tab1=crossTabMulti(dat = dat,rowvar_list = rowvar_list,colvar = "cat")
# Run models --------------------------------------------------------------
myvars=c("x1","x2","x3","x4")
mymods=ModelMakerMulti(dat = dat,list_of_variables_of_interest = myvars,outcome = "y",sf = 2,
simpleround = T,
joint_adjustment_vars = myvars,cov_name_list = NULL)
mymods$plot_output
mymods$df_output
mod=glm(as.formula("y~x1"),family = "gaussian",data = dat)
summary(mod)
makeORTable(mod)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.