# define problem 1
graphene <- as.data.frame(readxl::read_excel("examples/data/grapheneArgon.xlsx"))
psOpt = ParamHelpers::makeParamSet(
ParamHelpers::makeIntegerParam("power", lower = 10, upper = 5555),
ParamHelpers::makeIntegerParam("time", lower = 500, upper = 20210),
ParamHelpers::makeIntegerParam("pressure", lower = 0, upper = 100)
)
task_Graphene = task(
simulation = "regr.randomForest",
data = graphene,
target = "ratio",
psOpt = psOpt,
minimize = FALSE
)
# define problem 2
synthesis <- as.data.frame(readxl::read_excel("examples/data/synthesis.xlsx"))
psOpt = ParamHelpers::makeParamSet(
ParamHelpers::makeNumericParam("f", lower = 0, upper = 0.25),
ParamHelpers::makeNumericParam("k", lower = 0, upper = 0.1),
ParamHelpers::makeNumericParam("du", lower = 0, upper = 1),
ParamHelpers::makeNumericParam("dv", lower = 0, upper = 1)
)
task_Synthesis = task(
simulation = "regr.randomForest",
data = synthesis,
target = "interface",
psOpt = psOpt,
minimize = FALSE
)
################## Define problemList #############
problemList = generateProblemList(task_Graphene, task_Synthesis)
### 2.4 tuneMBO
psTune = ParamHelpers::makeParamSet(
ParamHelpers::makeDiscreteParam("design", values = c("maximinLHS",
"optimumLHS")),
ParamHelpers::makeDiscreteParam("crit", values = c("makeMBOInfillCritEI",
"makeMBOInfillCritAEI",
"makeMBOInfillCritCB",
"makeMBOInfillCritAdaCB")),
ParamHelpers::makeIntegerParam("cb.lambda", lower = 1, upper = 5,
requires = quote(crit == "makeMBOInfillCritCB")),
ParamHelpers::makeIntegerParam("cb.lambda.start", lower = 3, upper = 10,
requires = quote(crit == "makeMBOInfillCritAdaCB")),
ParamHelpers::makeNumericParam("cb.lambda.end", lower = 0, upper = 3,
requires = quote(crit == "makeMBOInfillCritAdaCB")),
ParamHelpers::makeDiscreteParam("surrogate", values = c("regr.randomForest", "regr.km")),
ParamHelpers::makeDiscreteParam("covtype" ,values = c("gauss","matern5_2",
"matern3_2","powexp"),
requires = quote(surrogate == "regr.km"))
)
# execute tuning
tuneResults2 = optimizertuneRace("optimizeMBO", psTune,
funcEvals = 55, itersTune = 1000, trainInstanceList = problemList,
minimize = FALSE, configurationsFile = "examples/configurations.txt",
plotAblation = TRUE, ablationFile = "ablationMBOPlot2.pdf", seed = 1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.