library(tidyverse)
library(pbapply)
library(parallel)
library(assertthat)
library(pROC)
library(patchwork)
source('R/utils.R')
theme_set(theme_minimal() +
theme(panel.grid.minor = element_blank()))
species <- list.files('out', '_ssnet.csv', full.names = TRUE) %>%
gsub('out/', '', .) %>%
gsub('\\_ssnet.csv', '', .)
load_ll(species[1])
pboptions(use_lb = TRUE)
cl <- makeCluster(parallel::detectCores())
clusterExport(cl, c('load_ll'))
clusterEvalQ(cl, library(assertthat))
clusterEvalQ(cl, library(tidyverse))
clusterEvalQ(cl, source('R/utils.R'))
ll_dfs <- pblapply(species, load_ll, cl = cl)
stopCluster(cl)
ll_df <- ll_dfs %>%
lapply(function(x) x$nll) %>%
bind_rows %>%
filter(group %in% c('train', 'validation')) %>%
mutate(group = ifelse(group == 'train',
'Training data',
'Validation data'))
ll_df %>%
write_csv('out/train-valid-nll.csv')
# check for NA values in the NLL values (which result from underflow)
ll_df %>%
group_by(group) %>%
summarize(nn_na = sum(nn %>% is.na),
ss_na = sum(ss %>% is.na),
sn_na = sum(ssnn %>% is.na))
overall_comparisons <- ll_df %>%
group_by(group) %>%
summarize(nn_nll = mean(nn, na.rm = TRUE),
ss_nll = mean(ss, na.rm = TRUE),
sn_nll = mean(ssnn, na.rm = TRUE))
overall_comparisons
write_csv(overall_comparisons, 'out/nll-comps.csv')
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.