#' Plot PARALLEL object
#'
#' Plot method showing a summarized output of the \link{PARALLEL} function
#'
#' @param x list of class PARALLEL. An output from the \link{PARALLEL} function.
#' @param ... not used.
#'
#' @export
#' @method plot PARALLEL
#'
#' @examples
#' \donttest{
#' # example with correlation matrix and "ML" estimation
#' x <- PARALLEL(test_models$case_11b$cormat, N = 500, method = "ML")
#' plot(x)
#' }
plot.PARALLEL <- function(x, ...) {
n_vars <- x$settings$n_vars
eigen_type <- x$settings$eigen_type
eigen_PCA <- x$eigenvalues_PCA
eigen_SMC <- x$eigenvalues_SMC
eigen_EFA <- x$eigenvalues_EFA
n_fac_PCA <- x$n_fac_PCA
n_fac_SMC <- x$n_fac_SMC
n_fac_EFA <- x$n_fac_EFA
x_dat <- x$settings$x_dat
decision_rule <- x$settings$decision_rule
percent <- x$settings$percent
# Create plots depending on eigen_type and if real data were entered or not
if("PCA" %in% eigen_type){
.plot_PA_helper(eigenvalues = eigen_PCA, n_vars = n_vars, n_fac = n_fac_PCA,
x_dat = x_dat, decision_rule = decision_rule,
percent = percent, eigen_type = "PCA")
}
if("SMC" %in% eigen_type){
.plot_PA_helper(eigenvalues = eigen_SMC, n_vars = n_vars, n_fac = n_fac_SMC,
x_dat = x_dat, decision_rule = decision_rule,
percent = percent, eigen_type = "SMC")
}
if("EFA" %in% eigen_type){
.plot_PA_helper(eigenvalues = eigen_EFA, n_vars = n_vars, n_fac = n_fac_EFA,
x_dat = x_dat, decision_rule = decision_rule,
percent = percent, eigen_type = "EFA")
}
}
.plot_PA_helper <- function(eigenvalues, n_vars, n_fac, x_dat,
decision_rule = decision_rule, percent = percent,
eigen_type){
p_eigen <- pretty(c(min(eigenvalues) * .9, eigenvalues,
max(eigenvalues) * 1.15))
graphics::plot.new()
graphics::plot.window(xlim = c(1, n_vars),
ylim = c(min(p_eigen), max(p_eigen)))
graphics::axis(1, seq_len(n_vars))
graphics::axis(2, p_eigen, las = 1)
graphics::mtext("Indicators", side = 1, line = 3, cex = 1.5, padj =-.5)
graphics::mtext("Eigenvalues", side = 2, line = 3, cex = 1.5, padj =.5)
if (isTRUE(x_dat)) {
graphics::lines(seq_len(n_vars), eigenvalues[,"Real Eigenvalues"])
graphics::points(seq_len(n_vars), eigenvalues[,"Real Eigenvalues"], pch = 16)
if (!is.na(n_fac)) {
graphics::points(n_fac, eigenvalues[n_fac,"Real Eigenvalues"],
pch = 1, cex = 2, col = "red")
graphics::text(n_fac, eigenvalues[n_fac,"Real Eigenvalues"],
n_fac, pos = 3, cex = 1.5, col = "red",
font = 1, offset = .75)
}
}
cols <- viridisLite::viridis(ncol(eigenvalues) - x_dat, end = .8)
names(cols) <- colnames(eigenvalues)[(as.numeric(x_dat) + 1):ncol(eigenvalues)]
graphics::lines(seq_len(n_vars), eigenvalues[,"Means"], lty = 2, lwd = 1.25,
col = cols[1])
for (perc_i in percent) {
graphics::lines(seq_len(n_vars), eigenvalues[,paste(perc_i, "Percentile")],
lty = 2, col = cols[paste(perc_i, "Percentile")], lwd = 1.25)
}
factors_text <- paste0("N Factors with Decision Rule '", decision_rule,
"' and Eigen Type '", eigen_type, "': ", n_fac)
graphics::title(factors_text)
graphics::legend("topright",
colnames(eigenvalues), lty = c(1, rep(2, length(cols))),
col = c("black", cols))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.