#-----------------------------------------------------------------------------#
# #
# QUALITY CONTROL STATISTICS IN R #
# #
# An R package for statistical in-line quality control. #
# #
# Written by: Miguel A. Flores Sanchez #
# Professor of Mathematic Department #
# Escuela Politecnica Nacional, Ecuador #
# miguel.flores@epn.edu.ec #
# #
#-----------------------------------------------------------------------------#
#-----------------------------------------------------------------------------#
# Main function to create a 'qcs.hat.cpm' object
#-----------------------------------------------------------------------------#
##' Process capability index (estimate Cpm)
##'
##' Estimate \code{"Cpm"} using the method described by Kerstin Vannman(2001).
##' @aliases qcs.hat.cpm
##' @param object qcs object of type \code{"qcs.xbar"} or \code{"qcs.one"}.
##' @param limits A vector specifying the lower and upper specification limits.
##' @param target A value specifying the target of the process.
##' If it is \code{NULL}, the target is set at the middle value between specification limits.
##' @param mu A value specifying the mean of data.
##' @param std.dev A value specifying the within-group standard deviation.
##' @param nsigmas A numeric value specifying the number of sigmas to use.
##' @param k0 A numeric value. If the capacity index exceeds the \code{k} value,
##' then the process is capable.
##' @param alpha The significance level (by default alpha=0.05).
##' @param n Size of the sample.
##' @param contour Logical value indicating whether contour graph should be plotted.
##' @param ylim The "y" limits of the plot.
##' @param ... Arguments to be passed to or from methods.
##' @export
##' @references
##' Montgomery, D.C. (1991) \emph{Introduction to Statistical Quality Control}, 2nd
##' ed, New York, John Wiley & Sons. \cr
##' Vannman, K. (2001). \emph{A Graphical Method to Control Process Capability}. Frontiers in Statistical Quality Control,
##' No 6, Editors: H-J Lenz and P-TH Wilrich. Physica-Verlag, Heidelberg, 290-311.\cr
##' Hubele and Vannman (2004). \emph{The E???ect of Pooled and Un-pooled Variance Estimators on Cpm When Using Subsamples}.
##' Journal Quality Technology, 36, 207-222.\cr
##' @examples
##' library(qcr)
##' data(pistonrings)
##' xbar <- qcs.xbar(pistonrings[1:125,],plot = TRUE)
##' mu <-xbar$center
##' std.dev <-xbar$std.dev
##' LSL=73.99; USL=74.01
##' qcs.hat.cpm(limits = c(LSL,USL),
##' mu = mu,std.dev = std.dev,ylim=c(0,1))
##'qcs.hat.cpm(object = xbar, limits = c(LSL,USL),ylim=c(0,1))
qcs.hat.cpm <- function(object, limits = c(lsl = -3, usl = 3),
target = NULL, mu = 0, std.dev = 1, nsigmas = 3,
k0 = 1, alpha = 0.05, n = 50, contour =TRUE, ylim = NULL,...){
if (!missing(object)){
if (!inherits(object, "qcs"))
stop("an object of class 'qcs' is required")
if (!(object$type == "xbar" | object$type == "one"))
stop("Process Capability Analysis only available for charts type
\"qcs.xbar\" and \"qcs.one\" charts")
x <- object[[3]][,1]
mu <- object$center
std.dev <- object$std.dev
}
if (nsigmas <= 0)
stop("nsigmas must be a value positive")
if (alpha < 0 | alpha > 1)
stop("alpha must be a value between 0 and 1")
if (length(limits)!=2)
stop("specification limits must be two")
lsl <- limits[1]
usl <- limits[2]
if (lsl>= usl)
stop("lsl >= usl")
if (!(is.numeric(usl) & is.finite(lsl)))
lsl <- NA
if (!(is.numeric(usl) & is.finite(lsl)))
usl <- NA
if (is.na(lsl) & is.na(usl))
stop("invalid specification limits")
if (is.null(target)) target <- mean(limits, na.rm = TRUE)
if (is.na(lsl)) {
if (target > usl)
warning("target value larger than one-sided specification limit...")
}
if (is.na(usl)) {
if (target < lsl)
warning("target value smaller than one-sided specification limit...")
}
if (!is.na(lsl) & !is.na(usl)) {
if (target < lsl || target > usl)
warning("target value is not within specification limits...")
}
m <- (lsl+usl)/2
d <- (usl-lsl)/2
u <- 0
v <- 1
c_alpha <- k0 * sqrt(n/qchisq(alpha, n))
if (any(1+v*((mu-target)/std.dev)^2<0))
stop("sample size must be a value more than 50")
ind <- (d-u*abs(mu-m))/(nsigmas*std.dev*sqrt(1+v*((mu-target)/std.dev)^2))
names(ind) <- c("Cpm")
#theorical
f.delta.t <- 1/(u + 3 * k0 * sqrt(v))
delta.t <- seq(-f.delta.t, f.delta.t, length = 100)
gamma.t <- sqrt((1 - u * abs(delta.t))^2/(9 * k0^2) - v * delta.t^2)
# empirical
f.delta.e <- 1/(u + 3 * c_alpha * sqrt(v))
delta.e <- seq(-f.delta.e, f.delta.e, length = 100)
gamma.e <- sqrt((1 - u * abs(delta.e))^2/(9 * c_alpha^2) - v * delta.e^2)
if (contour == TRUE){
oldpar <- par(bg="#CCCCCC", mar = c(5, 4, 4, 3) + 0.1)
point.delta <- round((mu-target)/d,4)
point.gamma <- round(std.dev/d,4)
ymax <- point.gamma+0.2
if (is.null(ylim)) ylim <- c(0,ymax)
plot(delta.t, gamma.t, cex.lab = 0.7, cex.axis = 0.7,
type = "l", col = "blue", lwd = 2, ylim = ylim,
axes = FALSE, xlab = "delta", ylab = "gamma",
main = paste ("Contour plot:",names(ind)),...)
rect(par("usr")[1],
par("usr")[3],
par("usr")[2],
par("usr")[4],
col = "white")
box(col = "#CCCCCC")
grid(col = "#CCCCCC")
abline(h = 0)
abline(v = 0)
axis(1)
axis(2)
lines(delta.t, gamma.t, col = "black", lwd = 2,lty = 1)
lines(delta.e, gamma.e, col = "blue", lwd = 2,lty = 2)
points(x = point.delta,y = point.gamma,col="red",pch = 21, bg = "red",
lwd=2)
legend("topleft", c("Theory", "Empirical"),
lwd = c(2,2), bty="n",lty = c(1,2), col =c("black","blue"), cex =0.7)
par(oldpar)
}
result <- list(round(ind,4),
delta = round((mu-target)/d,4),
gamma = round(std.dev/d,4),delta.t = delta.t,gamma.t = gamma.t,
delta.e = delta.e,gamma.e = gamma.e)
invisible(result)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.