R/MeasurementCohortCovariateCode.R

Defines functions createMeasurementCohortCovariateSettings getMeasurementCohortCovariateData

Documented in getMeasurementCohortCovariateData

# Copyright 2020 Observational Health Data Sciences and Informatics
#
# This file is part of CovCoagBaseValidation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

#' Extracts covariates based on measurements and cohort
#'
#' @details
#' This extracts measurement values for a concept set of measurement concept ids within some cohort
#'
#' @param connection  The database connection
#' @param oracleTempSchema  The temp schema if using oracle
#' @param cdmDatabaseSchema  The schema of the OMOP CDM data
#' @param cdmVersion  version of the OMOP CDM data
#' @param cohortTable  the table name that contains the target population cohort
#' @param rowIdField  string representing the unique identifier in the target population cohort
#' @param aggregated  whether the covariate should be aggregated
#' @param cohortId  cohort id for the target population cohort
#' @param covariateSettings  settings for the covariate cohorts and time periods
#'
#' @return
#' The models will now be in the package
#'
#' @export
getMeasurementCohortCovariateData <- function(connection,
                                   oracleTempSchema = NULL,
                                   cdmDatabaseSchema,
                                   cdmVersion = "5",
                                   cohortTable = "#cohort_person",
                                   rowIdField = "row_id",
                                   aggregated,
                                   cohortId,
                                   covariateSettings) {

  # Some SQL to construct the covariate:
  sql <- paste("select c.@row_id_field AS row_id, measurement_concept_id, unit_concept_id,",
               "{@lnAgeInteraction}?{LOG(YEAR(c.cohort_start_date)-p.year_of_birth)*}:{{@ageInteraction}?{(YEAR(c.cohort_start_date)-p.year_of_birth)*}}",
               "{@lnValue}?{LOG(value_as_number)}:{value_as_number} as value_as_number,",
               "measurement_date, abs(datediff(dd, measurement_date, c.cohort_start_date)) as index_time, value_as_number raw_value",
               "from @cdm_database_schema.measurement m inner join @cohort_temp_table c on c.subject_id = m.person_id",
               "and measurement_date >= dateadd(day, @startDay, cohort_start_date) and",
               "measurement_date <= dateadd(day, @endDay, cohort_start_date)",
               "{@ageInteraction | @lnAgeInteraction}?{inner join @cdm_database_schema.person p on p.person_id=c.subject_id}",
               "LEFT JOIN (",
               "SELECT distinct c2.subject_id from @cohort_temp_table c2 inner join",
               "@cohort_database_schema.@cohort_table inc_cohort on c2.subject_id = inc_cohort.subject_id",
               "where inc_cohort.cohort_definition_id = @cohort_id",
               "AND inc_cohort.cohort_start_date <= dateadd(day, @endDay, c2.cohort_start_date)",
               "AND inc_cohort.cohort_end_date >= dateadd(day, @startDay, c2.cohort_start_date)",
               ") inc on c.subject_id = inc.subject_id",
               "WHERE m.measurement_concept_id in (@concepts) {@lnValue}?{ and value_as_number >0 }",
               " AND inc.subject_id is @type NULL")

  sql <- SqlRender::render(sql,
                           cohort_temp_table = cohortTable,
                           row_id_field = rowIdField,
                           cohort_database_schema = covariateSettings$cohortDatabaseSchema,
                           cohort_table = covariateSettings$cohortTable,
                           cohort_id = covariateSettings$cohortId,
                           type = ifelse(covariateSettings$type == 'in', ' NOT ', ''), # reversed
                           startDay=covariateSettings$startDay,
                           endDay=covariateSettings$endDay,
                           concepts = paste(covariateSettings$conceptSet, collapse = ','),
                           cdm_database_schema = cdmDatabaseSchema,
                           ageInteraction = covariateSettings$ageInteraction,
                           lnAgeInteraction  = covariateSettings$lnAgeInteraction,
                           lnValue = covariateSettings$lnValue)
  sql <- SqlRender::translate(sql, targetDialect = attr(connection, "dbms"),
                              oracleTempSchema = oracleTempSchema)
  # Retrieve the covariate:
  covariates <- DatabaseConnector::querySql(connection, sql)
  # Convert colum names to camelCase:
  colnames(covariates) <- SqlRender::snakeCaseToCamelCase(colnames(covariates))

  # map data:
  covariates <- covariates[!is.na(covariates$valueAsNumber),]
  covariates <- covariateSettings$scaleMap(covariates)

  # aggregate data:
  if(covariateSettings$aggregateMethod == 'max'){
    covariates <- covariates %>% dplyr::group_by(.data$rowId) %>%
    dplyr::summarize(covariateValue = max(.data$valueAsNumber),
                     covariateValueSource = max(.data$rawValue))
  } else if(covariateSettings$aggregateMethod == 'min'){
    covariates <- covariates %>% dplyr::group_by(.data$rowId) %>%
      dplyr::summarize(covariateValue = min(.data$valueAsNumber),
                       covariateValueSource = min(.data$rawValue))
  } else if(covariateSettings$aggregateMethod == 'mean'){
     covariates <- covariates %>% dplyr::group_by(.data$rowId) %>%
      dplyr::summarize(covariateValue = mean(.data$valueAsNumber),
                       covariateValueSource = mean(.data$rawValue))
  } else if(covariateSettings$aggregateMethod == 'median'){
    covariates <- covariates %>% dplyr::group_by(.data$rowId) %>%
      dplyr::summarize(covariateValue = stats::median(.data$valueAsNumber),
                       covariateValueSource =stats::median(.data$rawValue))
  } else{
    last <- covariates %>% dplyr::group_by(.data$rowId) %>%
      dplyr::summarize(lastTime = min(.data$indexTime))
    covariates <- merge(covariates,last,
                        by.x = c('rowId','indexTime'),
                        by.y = c('rowId','lastTime') )

    covariates <- covariates %>% dplyr::group_by(.data$rowId) %>%
      dplyr::summarize(covariateValue = mean(.data$valueAsNumber),
                       covariateValueSource = mean(.data$rawValue))
  }

  # add covariateID:
  covariates$covariateId <- covariateSettings$covariateId

  #=================
  # CALCULATE TABLE 1 Measurement info
  table1 <- covariates %>% dplyr::group_by(.data$covariateId) %>%
    dplyr::summarize(meanValue = mean(.data$covariateValueSource),
                     sdValue = stats::sd(.data$covariateValueSource),
                     count = length(.data$covariateValueSource))
  table1 <- as.data.frame(table1)

  covariates <- covariates %>% dplyr::select(.data$rowId, .data$covariateId, .data$covariateValue)
  #=================


  # Construct covariate reference:
  covariateRef <- data.frame(covariateId = covariateSettings$covariateId,
                             covariateName = paste('Measurement during day',
                                                   covariateSettings$startDay,
                                                   'through',
                                                   covariateSettings$endDay,
                                                   'days relative to index:',
                                                   ifelse(covariateSettings$lnValue, 'log(', ''),
                                                   covariateSettings$covariateName,
                                                   ifelse(covariateSettings$lnValue, ')', ''),
                                                   ifelse(covariateSettings$ageInteraction, ' X Age', ''),
                                                   ifelse(covariateSettings$lnAgeInteraction, ' X ln(Age)', '')
                             ),
                             analysisId = covariateSettings$analysisId,
                             conceptId = 0)

  analysisRef <- data.frame(analysisId = covariateSettings$analysisId,
                            analysisName = "measurement covariate",
                            domainId = "measurement covariate",
                            startDay = covariateSettings$startDay,
                            endDay = covariateSettings$endDay,
                            isBinary = "N",
                            missingMeansZero = "Y")

  metaData <- list(sql = sql, call = match.call(), table1 = table1)
  result <- Andromeda::andromeda(covariates = covariates,
                                 covariateRef = covariateRef,
                                 analysisRef = analysisRef)
  attr(result, "metaData") <- metaData
  class(result) <- "CovariateData"
  return(result)
}


createMeasurementCohortCovariateSettings <- function(covariateName, conceptSet,
                                          cohortDatabaseSchema, cohortTable, cohortId,
                                          type = 'in', #'out'
                                          startDay=-30, endDay=0,
                                          scaleMap = NULL, aggregateMethod = 'recent',
                                          imputationValue = 0,
                                          ageInteraction = F,
                                          lnAgeInteraction = F,
                                          lnValue = F,
                                          covariateId = 1466,
                                          analysisId = 469
                                          ) {

  covariateSettings <- list(covariateName=covariateName,
                            conceptSet=conceptSet,
                            cohortDatabaseSchema = cohortDatabaseSchema,
                            cohortTable = cohortTable,
                            cohortId = cohortId,
                            type = type,
                            startDay=startDay,
                            endDay=endDay,
                            scaleMap=scaleMap,
                            aggregateMethod = aggregateMethod,
                            imputationValue = imputationValue,
                            ageInteraction = ageInteraction,
                            lnAgeInteraction = lnAgeInteraction,
                            lnValue = lnValue,
                            covariateId = covariateId,
                            analysisId = analysisId
                            )

  attr(covariateSettings, "fun") <- "CovCoagBaseValidation::getMeasurementCohortCovariateData"
  class(covariateSettings) <- "covariateSettings"
  return(covariateSettings)
}
mi-erasmusmc/CovCoagBaseValidation documentation built on Dec. 21, 2021, 5:53 p.m.