# Copyright 2020 Observational Health Data Sciences and Informatics
#
# This file is part of SkeletonExistingPredictionModelStudy
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#' Extracts covariates based on measurements and cohort
#'
#' @details
#' This extracts measurement values for a concept set of measurement concept ids within some cohort
#'
#' @param connection The database connection
#' @param oracleTempSchema The temp schema if using oracle
#' @param cdmDatabaseSchema The schema of the OMOP CDM data
#' @param cdmVersion version of the OMOP CDM data
#' @param cohortTable the table name that contains the target population cohort
#' @param rowIdField string representing the unique identifier in the target population cohort
#' @param aggregated whether the covariate should be aggregated
#' @param cohortId cohort id for the target population cohort
#' @param covariateSettings settings for the covariate cohorts and time periods
#'
#' @return
#' The models will now be in the package
#'
#' @export
getMeasurementCohortCovariateData <- function(connection,
oracleTempSchema = NULL,
cdmDatabaseSchema,
cdmVersion = "5",
cohortTable = "#cohort_person",
rowIdField = "row_id",
aggregated,
cohortId,
covariateSettings) {
# Some SQL to construct the covariate:
sql <- paste("select c.@row_id_field AS row_id, measurement_concept_id, unit_concept_id,",
"{@lnAgeInteraction}?{LOG(YEAR(c.cohort_start_date)-p.year_of_birth)*}:{{@ageInteraction}?{(YEAR(c.cohort_start_date)-p.year_of_birth)*}}",
"{@lnValue}?{LOG(value_as_number)}:{value_as_number} as value_as_number,",
"measurement_date, abs(datediff(dd, measurement_date, c.cohort_start_date)) as index_time, value_as_number raw_value",
"from @cdm_database_schema.measurement m inner join @cohort_temp_table c on c.subject_id = m.person_id",
"and measurement_date >= dateadd(day, @startDay, cohort_start_date) and",
"measurement_date <= dateadd(day, @endDay, cohort_start_date)",
"{@ageInteraction | @lnAgeInteraction}?{inner join @cdm_database_schema.person p on p.person_id=c.subject_id}",
"LEFT JOIN (",
"SELECT distinct c2.subject_id from @cohort_temp_table c2 inner join",
"@cohort_database_schema.@cohort_table inc_cohort on c2.subject_id = inc_cohort.subject_id",
"where inc_cohort.cohort_definition_id = @cohort_id",
"AND inc_cohort.cohort_start_date <= dateadd(day, @endDay, c2.cohort_start_date)",
"AND inc_cohort.cohort_end_date >= dateadd(day, @startDay, c2.cohort_start_date)",
") inc on c.subject_id = inc.subject_id",
"WHERE m.measurement_concept_id in (@concepts) {@lnValue}?{ and value_as_number >0 }",
" AND inc.subject_id is @type NULL")
sql <- SqlRender::render(sql,
cohort_temp_table = cohortTable,
row_id_field = rowIdField,
cohort_database_schema = covariateSettings$cohortDatabaseSchema,
cohort_table = covariateSettings$cohortTable,
cohort_id = covariateSettings$cohortId,
type = ifelse(covariateSettings$type == 'in', ' NOT ', ''), # reversed
startDay=covariateSettings$startDay,
endDay=covariateSettings$endDay,
concepts = paste(covariateSettings$conceptSet, collapse = ','),
cdm_database_schema = cdmDatabaseSchema,
ageInteraction = covariateSettings$ageInteraction,
lnAgeInteraction = covariateSettings$lnAgeInteraction,
lnValue = covariateSettings$lnValue)
sql <- SqlRender::translate(sql, targetDialect = attr(connection, "dbms"),
oracleTempSchema = oracleTempSchema)
# Retrieve the covariate:
covariates <- DatabaseConnector::querySql(connection, sql)
# Convert colum names to camelCase:
colnames(covariates) <- SqlRender::snakeCaseToCamelCase(colnames(covariates))
# map data:
covariates <- covariates[!is.na(covariates$valueAsNumber),]
covariates <- covariateSettings$scaleMap(covariates)
# aggregate data:
if(covariateSettings$aggregateMethod == 'max'){
covariates <- covariates %>% dplyr::group_by(rowId) %>%
dplyr::summarize(covariateValue = max(valueAsNumber),
covariateValueSource = max(rawValue))
} else if(covariateSettings$aggregateMethod == 'min'){
covariates <- covariates %>% dplyr::group_by(rowId) %>%
dplyr::summarize(covariateValue = min(valueAsNumber),
covariateValueSource = min(rawValue))
} else if(covariateSettings$aggregateMethod == 'mean'){
covariates <- covariates %>% dplyr::group_by(rowId) %>%
dplyr::summarize(covariateValue = mean(valueAsNumber),
covariateValueSource = mean(rawValue))
} else if(covariateSettings$aggregateMethod == 'median'){
covariates <- covariates %>% dplyr::group_by(rowId) %>%
dplyr::summarize(covariateValue = median(valueAsNumber),
covariateValueSource = median(rawValue))
} else{
last <- covariates %>% dplyr::group_by(rowId) %>%
dplyr::summarize(lastTime = min(indexTime))
covariates <- merge(covariates,last,
by.x = c('rowId','indexTime'),
by.y = c('rowId','lastTime') )
covariates <- covariates %>% dplyr::group_by(rowId) %>%
dplyr::summarize(covariateValue = mean(valueAsNumber),
covariateValueSource = mean(rawValue))
}
# add covariateID:
covariates$covariateId <- covariateSettings$covariateId
#=================
# CALCULATE TABLE 1 Measurement info
table1 <- covariates %>% dplyr::group_by(covariateId) %>%
dplyr::summarize(meanValue = mean(covariateValueSource),
sdValue = sd(covariateValueSource),
count = length(covariateValueSource))
table1 <- as.data.frame(table1)
covariates <- covariates %>% dplyr::select(rowId, covariateId, covariateValue)
#=================
# Construct covariate reference:
covariateRef <- data.frame(covariateId = covariateSettings$covariateId,
covariateName = paste('Measurement during day',
covariateSettings$startDay,
'through',
covariateSettings$endDay,
'days relative to index:',
ifelse(covariateSettings$lnValue, 'log(', ''),
covariateSettings$covariateName,
ifelse(covariateSettings$lnValue, ')', ''),
ifelse(covariateSettings$ageInteraction, ' X Age', ''),
ifelse(covariateSettings$lnAgeInteraction, ' X ln(Age)', '')
),
analysisId = covariateSettings$analysisId,
conceptId = 0)
analysisRef <- data.frame(analysisId = covariateSettings$analysisId,
analysisName = "measurement covariate",
domainId = "measurement covariate",
startDay = covariateSettings$startDay,
endDay = covariateSettings$endDay,
isBinary = "N",
missingMeansZero = "Y")
metaData <- list(sql = sql, call = match.call(), table1 = table1)
result <- Andromeda::andromeda(covariates = covariates,
covariateRef = covariateRef,
analysisRef = analysisRef)
attr(result, "metaData") <- metaData
class(result) <- "CovariateData"
return(result)
}
createMeasurementCohortCovariateSettings <- function(covariateName, conceptSet,
cohortDatabaseSchema, cohortTable, cohortId,
type = 'in', #'out'
startDay=-30, endDay=0,
scaleMap = NULL, aggregateMethod = 'recent',
imputationValue = 0,
ageInteraction = F,
lnAgeInteraction = F,
lnValue = F,
covariateId = 1466,
analysisId = 469
) {
covariateSettings <- list(covariateName=covariateName,
conceptSet=conceptSet,
cohortDatabaseSchema = cohortDatabaseSchema,
cohortTable = cohortTable,
cohortId = cohortId,
type = type,
startDay=startDay,
endDay=endDay,
scaleMap=scaleMap,
aggregateMethod = aggregateMethod,
imputationValue = imputationValue,
ageInteraction = ageInteraction,
lnAgeInteraction = lnAgeInteraction,
lnValue = lnValue,
covariateId = covariateId,
analysisId = analysisId
)
attr(covariateSettings, "fun") <- "CovCoagEmaPrediction::getMeasurementCohortCovariateData"
class(covariateSettings) <- "covariateSettings"
return(covariateSettings)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.