R/plotGraph.R

Defines functions .theme_plotGraph .add_graph_labels .graph_plotter .incorporate_graph_vis .add_graph_data_or_warn .colnames_tbl_graph .add_graph_node_labels .get_graph_data .plot_row_column_graph .norm_layout_edge_type .check_graph_plot_switches

#' Plotting igraph objects with information from a \code{SummarizedExperiment}
#'
#' \code{plotGraph} plots an \code{igraph} object with additional information
#' matched from a \code{SummarizedExperiment} object for the nodes only.
#' Information on the edges have to provided manually.
#'
#' @param x,y a graph object and a
#' \code{\link[SummarizedExperiment:SummarizedExperiment-class]{SummarizedExperiment}}
#' object or just a
#' \code{\link[SummarizedExperiment:SummarizedExperiment-class]{SummarizedExperiment}}.
#' For the latter object a graph object must be stored in
#' \code{metadata(x)$name}.
#'
#' @param name \code{Character scalar}. If \code{x} is a
#' \code{\link[SummarizedExperiment:SummarizedExperiment-class]{SummarizedExperiment}}
#' the key for subsetting the \code{metadata(x)} to a graph object.
#' (Default: \code{"graph"})
#'
#' @param show.label \code{Logical scalar}, \code{integer vector} or
#' \code{character vector}
#' If a \code{logical} scalar is given, should tip labels be plotted
#' or if a logical vector is provided, which labels should be shown? If an
#' \code{integer} or \code{character} vector is provided, it will be converted
#' to a logical vector. The \code{integer} values must be in the range of 1
#' and number of nodes, whereas the values of a \code{character} vector must
#' match values of a \code{label} or \code{name} column in the node data. In
#' case of a \code{character} vector only values corresponding to actual
#' labels will be plotted and if no labels are provided no labels will be
#' shown. (Default: \code{FALSE})
#'
#' @param show_label Deprecated. Use \code{show.label} instead.
#'
#' @param add.legend \code{Logical scalar}. Should legends be plotted?
#'   (Default: \code{TRUE})
#'
#' @param add_legend Deprecated. Use \code{add.legend} instead.
#'
#' @param layout \code{Character scalar}. Layout for the plotted graph. See
#'   \code{\link[ggraph:ggraph]{ggraph}} for details. (Default: \code{"kk"})
#'
#' @param edge.type \code{Character scalar}. Type of edge plotted on the graph.
#' See \code{\link[ggraph:geom_edge_fan]{geom_edge_fan}} for details and other
#' available geoms. (Default: \code{"fan"})
#'
#' @param edge_type Deprecated. Use \code{edge.type} instead.
#'
#' @param edge.colour.by \code{Character scalar}. Specification of an edge
#' metadata field to use for setting colours of the edges.
#' (Default: \code{NULL})
#'
#' @param edge_colour_by Deprecated. Use \code{edge.colour.by} instead.
#'
#' @param edge.width.by \code{Character scalar}. Specification of an edge
#' metadata
#' field to use for setting width of the edges. (Default: \code{NULL})
#'
#' @param edge_width_by Deprecated. Use \code{edge.width.by} instead.
#'
#' @param colour.by \code{Character scalar}. Specification of a column metadata
#' field or a feature to colour graph nodes by, see the by argument in
#' \code{\link[scater:retrieveCellInfo]{?retrieveCellInfo}} for possible
#' values. (Default: \code{NULL})
#'
#' @param colour_by Deprecated. Use \code{colour.by} instead.
#'
#' @param shape.by \code{Character scalar}. Specification of a column metadata
#'   field or a feature to shape graph nodes by, see the by argument in
#'   \code{\link[scater:retrieveCellInfo]{?retrieveCellInfo}} for possible
#'   values. (Default: \code{NULL})
#'
#' @param shape_by Deprecated. Use \code{shape.by} instead.
#'
#' @param size.by \code{Character scalar}. Specification of a column metadata
#'   field or a feature to size graph nodes by, see the by argument in
#'   \code{\link[scater:retrieveCellInfo]{?retrieveCellInfo}} for possible
#'   values. (Default: \code{NULL})
#'
#' @param size_by Deprecated. Use \code{size.by} instead.
#'
#' @param assay.type \code{Character scalar}. or \code{integer scalar}.
#' Specifies which assay to obtain expression values from, for use in point
#' aesthetics - see the \code{exprs_values} argument in
#' \code{\link[scater:retrieveCellInfo]{?retrieveCellInfo}}.
#' (Default: \code{"counts"})
#'
#' @param by_exprs_values Deprecated. Use \code{assay.type} instead.
#'
#' @param other.fields Additional fields to include in the node information
#'   without plotting them.
#'
#' @param other_fields Deprecated. Use \code{other.fields} instead.
#'
#' @param ... additional arguments for plotting. See
#' \code{\link{mia-plot-args}} for more details i.e. call
#' \code{help("mia-plot-args")}
#'
#' @details
#' Internally \code{tidygraph} and \code{ggraph} are used. Therefore, all
#' graph types which can be converted by \code{tidygraph::as_tbl_graph} can
#' be used.
#'
#' @return a \code{\link{ggtree}} plot
#'
#' @name plotGraph
#'
#' @examples
#' \donttest{
#' # data setup
#' library(mia)
#' data(GlobalPatterns)
#' data(col_graph)
#' data(row_graph)
#' data(row_graph_order)
#' metadata(GlobalPatterns)$col_graph <- col_graph
#'
#' genus <- agglomerateByRank(GlobalPatterns,"Genus",na.rm=TRUE)
#' metadata(genus)$row_graph <- row_graph
#' order <- agglomerateByRank(genus,"Order",na.rm=TRUE)
#' metadata(order)$row_graph <- row_graph_order
#'
#' # plot a graph independently
#' plotColGraph(col_graph,
#'              genus,
#'              colour.by = "SampleType",
#'              edge.colour.by = "weight",
#'              edge.width.by = "weight",
#'              show.label = TRUE)
#'
#' # plot the graph stored in the object
#' plotColGraph(genus,
#'              name = "col_graph",
#'              colour.by = "SampleType",
#'              edge.colour.by = "weight",
#'              edge.width.by = "weight")
#'
#'
#' # plot a graph independently
#' plotRowGraph(row_graph,
#'              genus,
#'              colour.by = "Kingdom",
#'              edge.colour.by = "weight",
#'              edge.width.by = "weight")
#'
#' # plot the graph stored in the object
#' plotRowGraph(genus,
#'              name = "row_graph",
#'              colour.by = "Phylum",
#'              edge.colour.by = "weight",
#'              edge.width.by = "weight")
#'
#'
#' # plot a graph independently
#' plotRowGraph(row_graph_order,
#'              order,
#'              colour.by = "Kingdom",
#'              edge.colour.by = "weight",
#'              edge.width.by = "weight")
#'
#' # plot the graph stored in the object and include some labels
#' plotRowGraph(order,
#'              name = "row_graph",
#'              colour.by = "Phylum",
#'              edge.colour.by = "weight",
#'              edge.width.by = "weight",
#'              show.label = c("Sulfolobales","Spirochaetales",
#'                             "Verrucomicrobiales"))
#'
#' # labels can also be included via selecting specific rownames of x/y
#' plotRowGraph(order,
#'              name = "row_graph",
#'              colour.by = "Phylum",
#'              edge.colour.by = "weight",
#'              edge.width.by = "weight",
#'              show.label = c(1,10,50))
#'
#' # labels can also be included via a logical vector, which has the same length
#' # as nodes are present
#' label_select <- rep(FALSE,nrow(order))
#' label_select[c(1,10,50)] <-  TRUE
#' plotRowGraph(order,
#'              name = "row_graph",
#'              colour.by = "Phylum",
#'              edge.colour.by = "weight",
#'              edge.width.by = "weight",
#'              show.label = label_select)
#' }
NULL

.check_graph_plot_switches <- function(show_label, add_legend){
    if(!.is_a_bool(show_label)){
        if( (!is.logical(show_label) && !is.character(show_label) &&
            !is.numeric(show_label)) ||
            is.null(show_label)){
            stop("'show_label' must be either TRUE or FALSE or logical, ",
                "integer or character ",
                "vector. Character alues should match the label of the graph.",
                call. = FALSE)
        }
    }
    if(!.is_a_bool(add_legend)){
        stop("'add_legend' must be either TRUE or FALSE.", call. = FALSE)
    }
}

.norm_layout_edge_type <- function(layout, edge_type){
    edge_type <- match.arg(edge_type[1L], c("fan","link","arc","parallel"))
    return(list(layout = layout,
                edge_type = edge_type))
}

#' @rdname plotGraph
#' @importFrom tidygraph as_tbl_graph
#' @export
setMethod("plotColGraph",
    signature = c(x = "ANY",y = "SummarizedExperiment"),
    function(x, y,
        show.label = show_label,
        show_label = FALSE,
        add.legend = add_legend,
        add_legend = TRUE,
        layout = "kk",
        edge.type = edge_type,
        edge_type = c("fan","link","arc","parallel"),
        edge.colour.by = edge_colour_by,
        edge_colour_by = NULL,
        edge.width.by = edge_width_by,
        edge_width_by = NULL,
        colour.by = colour_by,
        colour_by = NULL,
        shape.by = shape_by,
        shape_by = NULL,
        size.by = size_by,
        size_by = NULL,
        assay.type = by_exprs_values,
        by_exprs_values = "counts",
        other.fields = other_fields,
        other_fields = list(),
        ...){
        .plot_row_column_graph(
            x = x, y = y,
            show_label = show.label,
            add_legend = add.legend,
            layout = layout,
            edge_type = edge.type,
            edge_colour_by = edge.colour.by,
            edge_width_by = edge.width.by,
            colour_by = colour.by,
            shape_by = shape.by,
            size_by = size.by,
            by_exprs_values = assay.type,
            other_fields = other.fields,
            type = "column",
            ...)
    }
)

#' @rdname plotGraph
#' @importFrom S4Vectors metadata
#' @export
setMethod("plotColGraph",
    signature = c(x = "SummarizedExperiment", y = "missing"),
    function(x, y, name = "graph", ...){
        graph <- metadata(x)[[name]]
        if(is.null(graph)){
            stop("No data found in metadata for key '",name,"'", call. = FALSE)
        }
        plotColGraph(graph, x, ...)
    }
)

#' @rdname plotGraph
#' @importFrom tidygraph as_tbl_graph
#' @export
setMethod("plotRowGraph",
    signature = c(x = "ANY",y = "SummarizedExperiment"),
    function(x, y,
        show.label = show_label,
        show_label = FALSE,
        add.legend = add_legend,
        add_legend = TRUE,
        layout = "kk",
        edge.type = edge_type,
        edge_type = c("fan","link","arc","parallel"),
        edge.colour.by = edge_colour_by,
        edge_colour_by = NULL,
        edge.width.by = edge_width_by,
        edge_width_by = NULL,
        colour.by = colour_by,
        colour_by = NULL,
        shape.by = shape_by,
        shape_by = NULL,
        size.by = NULL,
        assay.type = by_exprs_values,
        by_exprs_values = "counts",
        other.fields = other_fields,
        other_fields = list(),
        ...){
        .plot_row_column_graph(
            x = x, y = y,
            show_label = show.label,
            add_legend = add.legend,
            layout = layout,
            edge_type = edge.type,
            edge_colour_by = edge.colour.by,
            edge_width_by = edge.width.by,
            colour_by = colour.by,
            shape_by = shape.by,
            size_by = size.by,
            by_exprs_values = assay.type,
            other_fields = other.fields,
            type = "row",
            ...)
    }
)

#' @rdname plotGraph
#' @importFrom S4Vectors metadata
#' @export
setMethod("plotRowGraph",
    signature = c(x = "SummarizedExperiment", y = "missing"),
    function(x, y, name = "graph",...){
        graph <- metadata(x)[[name]]
        if(is.null(graph)){
            stop("No data found in metadata for key '",name,"'", call. = FALSE)
        }
        plotRowGraph(graph, x, ...)
    }
)

.plot_row_column_graph <- function(x, y,
        show_label = FALSE,
        add_legend = TRUE,
        layout = "kk",
        edge_type = c("fan","link","arc","parallel"),
        edge_colour_by = NULL,
        edge_width_by = NULL,
        colour_by = NULL,
        shape_by = NULL,
        size_by = NULL,
        by_exprs_values = "counts",
        other_fields = list(),
        type = c("row","column"),
        ...){
    type <- match.arg(type)
    # input check
    .check_graph_plot_switches(show_label = show_label, add_legend = add_legend)
    norm_out <- .norm_layout_edge_type(layout, edge_type)
    layout <- norm_out$layout
    edge_type <- norm_out$edge_type
    #
    graph_data <- .get_graph_data(x)
    label_out <- .add_graph_node_labels(graph_data, show_label)
    graph_data <- label_out$df
    show_label <- label_out$show_label
    vis_out <- .incorporate_graph_vis(
        graph_data,
        se = y,
        edge_colour_by = edge_colour_by,
        edge_width_by = edge_width_by,
        colour_by = colour_by,
        shape_by = shape_by,
        size_by = size_by,
        by_exprs_values = by_exprs_values,
        other_fields = other_fields,
        type = type)
    graph_data <- vis_out$df
    edge_colour_by <- vis_out$edge_colour_by
    edge_width_by <- vis_out$edge_width_by
    colour_by <- vis_out$colour_by
    shape_by <- vis_out$shape_by
    size_by <- vis_out$size_by
    .graph_plotter(
        graph_data,
        layout = layout,
        edge_type = edge_type,
        add_legend = add_legend,
        show_label = show_label,
        edge_colour_by = edge_colour_by,
        edge_width_by = edge_width_by,
        colour_by = colour_by,
        shape_by = shape_by,
        size_by = size_by,
        ...)
}

################################################################################

#' @importFrom tidygraph as_tbl_graph
.get_graph_data <- function(graph){
    graph_data <- as_tbl_graph(graph)
    graph_data
}

#' @importFrom tidygraph activate
#' @importFrom dplyr mutate
.add_graph_node_labels <- function(graph_data, show_label){
    if(!("label" %in% .colnames_tbl_graph(graph_data, "nodes")) &&
            ("name" %in% .colnames_tbl_graph(graph_data, "nodes"))){
        graph_data <- graph_data %>%
            activate("nodes") %>%
            mutate(label = .data$name)
    }

    if(!is.logical(show_label) || length(show_label) > 1L) {
        data <- graph_data %>%
            activate("nodes") %>%
            as_tibble()
        if(is.character(show_label) && length(show_label) == nrow(data)) {
            graph_data <- graph_data %>%
                activate("nodes") %>%
                mutate(label = show_label)
            show_label <- TRUE
        } else if(!("label" %in% .colnames_tbl_graph(graph_data, "nodes"))){
            warning("If 'show_label' is a character vector with length != ",
                    "number of nodes in the graph or a logical/integer ",
                    "vector, a 'name' or 'label' column must exist in the ",
                    "graph data.",
                    call. = FALSE)
            show_label <- FALSE
        } else {
            if(is.numeric(show_label)){
                if(any(show_label != as.integer(show_label)) ||
                        min(show_label) < 1 || max(show_label) > nrow(data)){
                    stop("If 'show_label' is numeric, values have to be whole ",
                        "numbers and must be between 1 and the number of ",
                        "nodes in the graph", call. = FALSE)
                }
                label <- rep(FALSE, nrow(data))
                label[show_label] <- TRUE
                show_label <- label
            } else if(is.character(show_label)) {
                show_label <- data$label %in% show_label
            }
            if(is.logical(show_label) && length(show_label) != nrow(data)){
                stop("If 'show_label' is logical, it must have the length as ",
                    "nodes are in the graph.", call. = FALSE)
            }
            graph_data <- graph_data %>%
                activate("nodes") %>%
                mutate(label = ifelse(show_label, label, NA_character_))
            show_label <- TRUE
        }
        if(all(is.na(graph_data %>% activate("nodes") %>% pull("label")))){
            show_label <- FALSE
            warning("No labels to plot.", call. = FALSE)
        }
    }
    return(list(df = graph_data,
                show_label = show_label))
}

#' @importFrom tidygraph activate as_tibble
.colnames_tbl_graph <- function(graph_data, type){
    graph_data %>%
        activate(!!sym(type)) %>%
        as_tibble() %>%
        colnames()
}

#' @importFrom tidygraph activate
.add_graph_data_or_warn <- function(data, graph_data, type, name = data$name){
    names <- .colnames_tbl_graph(graph_data, type)
    if(name %in% names){
        warning("Data for '",name,"' already present in graph nodes.",
                "Data will not be added.",
                call. = FALSE)
    }
    graph_data %>%
        activate(!!sym(type)) %>%
        mutate(!!sym(data$name) := data$value)
}

#' @importFrom scater retrieveFeatureInfo retrieveCellInfo
#' @importFrom dplyr rename
#' @importFrom tibble rownames_to_column
#' @importFrom tidygraph activate as_tibble
.incorporate_graph_vis <- function(
        graph_data,
        se,
        edge_colour_by,
        edge_width_by,
        colour_by,
        shape_by,
        size_by,
        by_exprs_values = "counts",
        other_fields = list(),
        type = c("row","column")){
    type <- match.arg(type)
    type_FUN <- switch(
        type,
        row = scater::retrieveFeatureInfo,
        column = scater::retrieveCellInfo)
    variables <- c(
        colour_by = colour_by, shape_by = shape_by, size_by = size_by)
    colour_by <- NULL
    shape_by <- NULL
    size_by <- NULL
    # node data
    if(!is.null(variables)){
        # remove any variables values, which are already available and
        # rename columns by their usage
        cn <- .colnames_tbl_graph(graph_data,"nodes")
        if(length(cn) > 0L){
            f <- variables %in% cn
            if(any(f)){
                for(i in seq_along( variables[f])){
                    var_name <- names(variables[f])[i]
                    # mirror back variable name
                    assign(var_name, .get_new_var_name_value(
                        get(var_name), variables[f][i]))
                    # rename columns by their usage
                    graph_data %>%
                        activate("nodes") %>%
                        dplyr::rename(!!sym(var_name) := variables[f][i])
                }
                variables <- variables[!f]
            }
        }
        if(length(variables) > 0L){
            dim_graph_nodes <- graph_data %>%
                activate("nodes") %>%
                as_tibble() %>%
                dim()
            dim_se <- switch(
                type,
                row = nrow(se),
                column = ncol(se))
            if(dim_graph_nodes[1] != dim_se){
                stop("The number of nodes in the graph and chosen dimension ",
                    "of the SummarizedExperiment must be equal.", call. = FALSE)
            }
            for(i in seq_along(variables)){
                # get data
                feature_info <- type_FUN(
                    se, variables[i], exprs_values = by_exprs_values)
                feature_info_name <- feature_info$name
                # mirror back variable name, if a partial match was used
                var_name <- names(variables)[i]
                assign(var_name, .get_new_var_name_value(
                    get(var_name), feature_info$name))
                # rename columns by their usage
                feature_info$name <- var_name
                graph_data <- .add_graph_data_or_warn(
                    feature_info, graph_data, type = "nodes", feature_info_name)
            }
        }
    }
    if(length(other_fields) != 0L){
        for (o in other_fields) {
            other <- type_FUN(se, o, exprs_values = by_exprs_values)
            graph_data <- .add_graph_data_or_warn(
                other, graph_data, type = "nodes")
        }
    }
    # edge data
    variables <- c(
        edge_colour_by = edge_colour_by, edge_width_by = edge_width_by)
    edge_colour_by <- NULL
    edge_width_by <- NULL
    cn <- .colnames_tbl_graph(graph_data,"edges")
    variables <- variables[variables %in% cn]
    if(length(variables)  != 0L){
        for(i in seq_along(variables)){
            var_name <- names(variables)[i]
            # mirror back variable name
            assign(var_name, .get_new_var_name_value(
                get(var_name), variables[i]))
            # rename columns by their usage
            graph_data <- graph_data %>%
                activate("edges") %>%
                mutate(!!sym(var_name) := !!sym(unname(variables[i])))
        }
    }
    #
    res <- list(
        df = graph_data,
        edge_colour_by = edge_colour_by,
        edge_width_by = edge_width_by,
        colour_by = colour_by,
        shape_by = shape_by,
        size_by = size_by)
    return(res)
}

.graph_plotter <- function(
        object,
        layout,
        edge_type,
        add_legend,
        show_label,
        edge_colour_by,
        edge_width_by,
        colour_by,
        shape_by,
        size_by,
        algorithm = NULL,
        line_alpha = line.alpha,
        line.alpha = 1,
        line_width = line.width,
        line.width = NULL,
        line_width_range = line.width.range,
        line.width.range = c(0.5,3),
        point_alpha = point.alpha,
        point.alpha = 1,
        point_size = point.size,
        point.size = 2,
        point_size_range = point.size.range,
        point.size.range = c(1,4)){
    # assemble arg list
    point_out <- .get_point_args(
        colour_by,
        shape_by,
        size_by,
        alpha = point_alpha,
        size = point_size)
    edge_out <- .get_graph_edge_args(
        edge_colour_by,
        edge_width_by,
        alpha = line_alpha,
        size = line_width,
        edge_type)
    edge_FUN <- match.fun(paste0("geom_edge_",edge_type))
    # begin plotting
    if(!is.null(algorithm)){
        plot_out <- ggraph(object, layout = layout, algorithm = algorithm)
    } else {
        plot_out <- ggraph(object, layout = layout)
    }
    plot_out <- plot_out +
        do.call(edge_FUN, edge_out$args) +
        do.call(geom_node_point, point_out$args)
    # add node labels
    plot_out <- .add_graph_labels(plot_out, show_label)
    # adjust edge colours
    if(!is.null(edge_colour_by)){
        plot_out <- .resolve_plot_colours(
            plot_out,
            object %>% activate("edges") %>% pull("edge_colour_by"),
            edge_colour_by,
            type = "edges",
            na.translate = FALSE,
            # Specify guide
            guide = "edge_colourbar"
            )
    }
    if (!is.null(edge_width_by)) {
        if(is.numeric(object %>% activate("edges") %>% pull("edge_width_by"))){
            SIZEFUN <- scale_edge_width_continuous
        } else {
            SIZEFUN <- scale_edge_width_discrete
        }
        plot_out <- .add_extra_guide_graph(plot_out, edge_width_by) +
            SIZEFUN(range = line_width_range)
    }
    if(!is.null(size_by)){
        if(is.numeric(object %>% activate("nodes") %>% pull("size_by"))){
            SIZEFUN <- scale_size_continuous
        } else {
            SIZEFUN <- scale_size_discrete
        }
        plot_out <- plot_out +
            SIZEFUN(range = point_size_range)
    }
    # adjust point colours
    if(!is.null(colour_by)){
        plot_out <- .resolve_plot_colours(
            plot_out,
            object %>% activate("nodes") %>% pull("colour_by"),
            colour_by,
            fill = point_out$fill,
            na.translate = FALSE)
    }

    # add additional guides
    plot_out <- .add_extra_guide(plot_out, shape_by, size_by)
    # add theme
    plot_out <- .theme_plotGraph(plot_out)
    # optionally hide legends
    if (!add_legend) {
        plot_out <- plot_out +
            theme(legend.position = "none")
    }
    plot_out
}

#' @importFrom tidyr drop_na
.add_graph_labels <- function(plot_out, show_label){
    label <- NULL # disable note: no global binding for variable
    if(show_label){
        label_data <- plot_out$data %>% drop_na(label)
        plot_out <- plot_out +
            geom_node_label(
                mapping = aes(label = .data[["label"]]),
                data = label_data,
                repel = TRUE,
                max.overlaps = 100)
    }
    plot_out
}

.theme_plotGraph <- function(plot){
    plot +
        theme_graph(base_family = "", background = NA)
}
microbiome/miaViz documentation built on April 13, 2025, 3:29 a.m.