# import Data -------------------------------------------------------------
muc = read.csv("https://www.ncei.noaa.gov/data/global-summary-of-the-year/access/GM000004199.csv")
nyc = read.csv("https://www.ncei.noaa.gov/data/global-summary-of-the-year/access/USW00094728.csv")
muc_start = muc$DATE[1]
muc_end = muc$DATE[nrow(muc)]
nyc_start = nyc$DATE[1]
nyc_end = nyc$DATE[nrow(nyc)]
# keep information on station , temp and precipitation
muc = muc[, c("DATE", "PRCP", "TAVG", "TMIN", "TMAX")]
nyc = nyc[, c("PRCP", "TAVG", "TMIN", "TMAX")]
muc = na.omit(muc)
nyc = na.omit(nyc)
# model --------------------------------------------------------------------
task = TaskRegrForecast$new(id = "muc",
backend = ts(muc, start = muc_start, end = muc_end, frequency = 1),
target = c("TAVG", "TMIN", "TMAX"))
learner = LearnerRegrForecastVAR$new()
learner$train(task, row_ids = 1:130)
learner$model
p = learner$predict(task, row_ids = 131:136)
p$se
rr = rsmp("RollingWindowCV", fixed_window = F)
rr$instantiate(task)
resample = resample(task, learner, rr, store_models = TRUE)
resample$predictions()
autoplot(task)
task$col_roles
# autoarima ---------------------------------------------------------------
task = TaskRegrForecast$new(id = "muc",
backend = ts(muc[c("TAVG", "PRCP")], start = muc_start, end = muc_end, frequency = 1),
target = "TAVG")
learner = LearnerRegrForecastAutoArima$new()
learner$train(task, row_ids = 1:130)
learner$model
p = learner$predict(task, row_ids = 131:136)
p$se
checkresiduals(learner$model)
autoplot(forecast(learner$model, xreg = as.matrix(task$data(cols = "PRCP", rows = 131:136))))
# nyc ---------------------------------------------------------------------
task = TaskRegrForecast$new(id = "nyc",
backend = ts(nyc, start = nyc_start, end = nyc_end, frequency = 1),
target = c("TAVG", "TMIN", "TMAX"))
autoplot(task) + ggtitle("NYC - Yearly Climate Data")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.