#' @title Rush Data Storage
#'
#' @description
#' The `ArchiveAsyncFSelect` stores all evaluated feature subsets and performance scores in a [rush::Rush] database.
#'
#' @details
#' The [ArchiveAsyncFSelect] is a connector to a [rush::Rush] database.
#'
#' @section Data Structure:
#'
#' The table (`$data`) has the following columns:
#'
#' * One column for each feature of the search space (`$search_space`).
#' * One column for each performance measure (`$codomain`).
#' * `runtime_learners` (`numeric(1)`)\cr
#' Sum of training and predict times logged in learners per [mlr3::ResampleResult] / evaluation.
#' This does not include potential overhead time.
#' * `timestamp` (`POSIXct`)\cr
#' Time stamp when the evaluation was logged into the archive.
#'
#' @section Analysis:
#' For analyzing the feature selection results, it is recommended to pass the [ArchiveAsyncFSelect] to `as.data.table()`.
#' The returned data table contains the [mlr3::ResampleResult] for each feature subset evaluation.
#'
#' @section S3 Methods:
#' * `as.data.table.ArchiveFSelect(x, unnest = "x_domain", exclude_columns = "uhash", measures = NULL)`\cr
#' Returns a tabular view of all evaluated feature subsets.\cr
#' [ArchiveAsyncFSelect] -> [data.table::data.table()]\cr
#' * `x` ([ArchiveAsyncFSelect])
#' * `unnest` (`character()`)\cr
#' Transforms list columns to separate columns. Set to `NULL` if no column should be unnested.
#' * `exclude_columns` (`character()`)\cr
#' Exclude columns from table. Set to `NULL` if no column should be excluded.
#' * `measures` (List of [mlr3::Measure])\cr
#' Score feature subsets on additional measures.
#'
#' @template param_search_space
#' @template param_codomain
#' @template param_rush
#' @template param_ties_method
#'
#' @export
ArchiveAsyncFSelect = R6Class("ArchiveAsyncFSelect",
inherit = bbotk::ArchiveAsync,
public = list(
#' @description
#' Creates a new instance of this [R6][R6::R6Class] class.
#'
#' @param check_values (`logical(1)`)\cr
#' If `TRUE` (default), feature subsets are check for validity.
initialize = function(
search_space,
codomain,
rush,
ties_method = "least_features"
) {
super$initialize(
search_space = search_space,
codomain = codomain,
rush = rush)
private$.benchmark_result = BenchmarkResult$new()
private$.ties_method = assert_choice(ties_method, c("least_features", "random"))
},
#' @description
#' Retrieve [mlr3::Learner] of the i-th evaluation, by position or by unique hash `uhash`.
#' `i` and `uhash` are mutually exclusive.
#' Learner does not contain a model. Use `$learners()` to get learners with models.
#'
#' @param i (`integer(1)`)\cr
#' The iteration value to filter for.
#'
#' @param uhash (`logical(1)`)\cr
#' The `uhash` value to filter for.
learner = function(i = NULL, uhash = NULL) {
self$resample_result(i = i, uhash = uhash)$learner
},
#' @description
#' Retrieve list of trained [mlr3::Learner] objects of the i-th evaluation, by position or by unique hash `uhash`.
#' `i` and `uhash` are mutually exclusive.
#'
#' @param i (`integer(1)`)\cr
#' The iteration value to filter for.
#'
#' @param uhash (`logical(1)`)\cr
#' The `uhash` value to filter for.
learners = function(i = NULL, uhash = NULL) {
self$resample_result(i = i, uhash = uhash)$learners
},
#' @description
#' Retrieve list of [mlr3::Prediction] objects of the i-th evaluation, by position or by unique hash `uhash`.
#' `i` and `uhash` are mutually exclusive.
#'
#' @param i (`integer(1)`)\cr
#' The iteration value to filter for.
#'
#' @param uhash (`logical(1)`)\cr
#' The `uhash` value to filter for.
predictions = function(i = NULL, uhash = NULL) {
self$resample_result(i = i, uhash = uhash)$predictions()
},
#' @description
#' Retrieve [mlr3::ResampleResult] of the i-th evaluation, by position or by unique hash `uhash`.
#' `i` and `uhash` are mutually exclusive.
#'
#' @param i (`integer(1)`)\cr
#' The iteration value to filter for.
#'
#' @param uhash (`logical(1)`)\cr
#' The `uhash` value to filter for.
resample_result = function(i = NULL, uhash = NULL) {
self$benchmark_result$resample_result(i = i, uhash = uhash)
},
#' @description
#' Printer.
#'
#' @param ... (ignored).
print = function() {
cat_cli(cli_h1("{format(self)} with {.val {self$n_evals}} evaluations"))
print(as.data.table(self, unnest = NULL, exclude_columns = c(
"x_domain",
"timestamp_xs",
"timestamp_ys",
"runtime_learners",
"resample_result",
"worker_id",
"keys",
"pid",
"state")), digits = 2)
},
#' @description
#' Returns the best scoring feature set(s).
#' For single-crit optimization, the solution that minimizes / maximizes the objective function.
#' For multi-crit optimization, the Pareto set / front.
#'
#' @param n_select (`integer(1L)`)\cr
#' Amount of points to select.
#' Ignored for multi-crit optimization.
#' @param ties_method (`character(1L)`)\cr
#' Method to break ties when multiple points have the same score.
#' Either `"least_features"` (default) or `"random"`.
#' Ignored for multi-crit optimization.
#' If `n_select > 1L`, the tie method is ignored and the first point is returned.
#'
#' @return [data.table::data.table()]
best = function(n_select = 1, ties_method = "least_features") {
ties_method = assert_choice(ties_method, c("least_features", "random"), null.ok = TRUE) %??% private$.ties_method
assert_count(n_select)
tab = self$finished_data
if (self$codomain$target_length == 1L) {
if (n_select == 1L) {
# use which_max to find the best point
y = tab[[self$cols_y]] * -self$codomain$direction
if (ties_method == "least_features") {
ii = which(y == max(y))
tab = tab[ii]
ii = which_min(rowSums(tab[, self$cols_x, with = FALSE]), ties_method = "random")
tab[ii]
} else {
ii = which_max(y, ties_method = "random")
tab[ii]
}
} else {
# use data.table fast sort to find the best points
setorderv(tab, cols = self$cols_y, order = self$codomain$direction)
head(tab, n_select)
}
} else {
# use non-dominated sorting to find the best points
ymat = t(as.matrix(tab[, self$cols_y, with = FALSE]))
ymat = self$codomain$direction * ymat
tab[!is_dominated(ymat)]
}
}
),
active = list(
#' @field benchmark_result ([mlr3::BenchmarkResult])\cr
#' Benchmark result.
benchmark_result = function() {
# cache benchmark result
if (self$rush$n_finished_tasks > private$.benchmark_result$n_resample_results) {
bmrs = map(self$finished_data$resample_result, as_benchmark_result)
private$.benchmark_result = Reduce(function(lhs, rhs) lhs$combine(rhs), bmrs)
}
private$.benchmark_result
},
#' @field ties_method (`character(1)`)\cr
#' Method to handle ties in the archive.
#' One of `"least_features"` (default) or `"random"`.
ties_method = function(rhs) {
assert_ro_binding(rhs)
private$.ties_method
}
),
private = list(
.benchmark_result = NULL,
.ties_method = NULL
)
)
#' @export
as.data.table.ArchiveAsyncFSelect = function(x, ..., unnest = NULL, exclude_columns = NULL, measures = NULL) {
data = x$data_with_state()
if (!nrow(data)) return(data.table())
# unnest columns
cols = intersect(unnest, names(data))
tab = unnest(data, cols, prefix = "{col}_")
# add extra measures
cols_y_extra = NULL
if (!is.null(measures) && !is.null(tab$resample_result)) {
measures = assert_measures(as_measures(measures), learner = x$learners(1)[[1]], task = x$resample_result(1)$task)
cols_y_extra = map_chr(measures, "id")
scores = map_dtr(x$data$resample_result, function(rr) as.data.table(as.list(rr$aggregate(measures))))
tab = cbind(tab, scores)
}
setcolorder(tab, c(x$cols_x, x$cols_y, cols_y_extra, "runtime_learners", "timestamp_xs", "timestamp_ys"))
tab[, setdiff(names(tab), exclude_columns), with = FALSE]
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.