#' @title Extreme Gradient Boosting Classification Learner
#'
#' @name mlr_learners_classif.xgboost
#'
#' @description
#' eXtreme Gradient Boosting classification.
#' Calls [xgboost::xgb.train()] from package \CRANpkg{xgboost}.
#'
#' If not specified otherwise, the evaluation metric is set to the default `"logloss"`
#' for binary classification problems and set to `"mlogloss"` for multiclass problems.
#' This was necessary to silence a deprecation warning.
#'
#' Note that using the `watchlist` parameter directly will lead to problems when wrapping this [mlr3::Learner] in a
#' `mlr3pipelines` `GraphLearner` as the preprocessing steps will not be applied to the data in the watchlist.
#' See the section *Early Stopping and Validation* on how to do this.
#'
#' @template note_xgboost
#' @section Initial parameter values:
#' - `nrounds`:
#' - Actual default: no default.
#' - Adjusted default: 1000.
#' - Reason for change: Without a default construction of the learner would error.
#' The lightgbm learner has a default of 1000, so we use the same here.
#' - `nthread`:
#' - Actual value: Undefined, triggering auto-detection of the number of CPUs.
#' - Adjusted value: 1.
#' - Reason for change: Conflicting with parallelization via \CRANpkg{future}.
#' - `verbose`:
#' - Actual default: 1.
#' - Adjusted default: 0.
#' - Reason for change: Reduce verbosity.
#'
#' @section Early Stopping and Validation:
#' In order to monitor the validation performance during the training, you can set the `$validate` field of the Learner.
#' For information on how to configure the validation set, see the *Validation* section of [mlr3::Learner].
#' This validation data can also be used for early stopping, which can be enabled by setting the `early_stopping_rounds` parameter.
#' The final (or in the case of early stopping best) validation scores can be accessed via `$internal_valid_scores`, and the optimal `nrounds` via `$internal_tuned_values`.
#' The internal validation measure can be set via the `eval_metric` parameter that can be a [mlr3::Measure], a function, or a character string for the internal xgboost measures.
#' Using an [mlr3::Measure] is slower than the internal xgboost measures, but allows to use the same measure for tuning and validation.
#'
#' @templateVar id classif.xgboost
#' @template learner
#'
#' @references
#' `r format_bib("chen_2016")`
#'
#' @export
#' @template seealso_learner
#' @template example_dontrun
#' @examples
#'
#' \dontrun{
#' # Train learner with early stopping on spam data set
#' task = tsk("spam")
#'
#' # use 30 percent for validation
#' # Set early stopping parameter
#' learner = lrn("classif.xgboost",
#' nrounds = 100,
#' early_stopping_rounds = 10,
#' validate = 0.3
#' )
#'
#' # Train learner with early stopping
#' learner$train(task)
#'
#' # Inspect optimal nrounds and validation performance
#' learner$internal_tuned_values
#' learner$internal_valid_scores
#' }
LearnerClassifXgboost = R6Class("LearnerClassifXgboost",
inherit = LearnerClassif,
public = list(
#' @description
#' Creates a new instance of this [R6][R6::R6Class] class.
initialize = function() {
p_nrounds = p_int(1L,
tags = c("train", "hotstart", "internal_tuning"),
aggr = crate(function(x) as.integer(ceiling(mean(unlist(x)))), .parent = topenv()),
in_tune_fn = crate(function(domain, param_vals) {
if (is.null(param_vals$early_stopping_rounds)) {
stop("Parameter 'early_stopping_rounds' must be set to use internal tuning.")
}
if (is.null(param_vals$eval_metric)) {
stop("Parameter 'eval_metric' must be set explicitly when using internal tuning.")
}
assert_integerish(domain$upper, len = 1L, any.missing = FALSE) }, .parent = topenv()),
disable_in_tune = list(early_stopping_rounds = NULL)
)
ps = ps(
alpha = p_dbl(0, default = 0, tags = "train"),
approxcontrib = p_lgl(default = FALSE, tags = "predict"),
base_score = p_dbl(default = 0.5, tags = "train"),
booster = p_fct(c("gbtree", "gblinear", "dart"), default = "gbtree", tags = c("train", "control")),
callbacks = p_uty(default = list(), tags = "train"),
colsample_bylevel = p_dbl(0, 1, default = 1, tags = "train"),
colsample_bynode = p_dbl(0, 1, default = 1, tags = "train"),
colsample_bytree = p_dbl(0, 1, default = 1, tags = c("train", "control")),
device = p_uty(default = "cpu", tags = "train"),
disable_default_eval_metric = p_lgl(default = FALSE, tags = "train"),
early_stopping_rounds = p_int(1L, default = NULL, special_vals = list(NULL), tags = "train"),
eta = p_dbl(0, 1, default = 0.3, tags = c("train", "control")),
eval_metric = p_uty(tags = "train", custom_check = crate({function(x) check_true(any(is.character(x), is.function(x), inherits(x, "Measure")))})),
feature_selector = p_fct(c("cyclic", "shuffle", "random", "greedy", "thrifty"), default = "cyclic", tags = "train", depends = quote(booster == "gblinear")),
gamma = p_dbl(0, default = 0, tags = c("train", "control")),
grow_policy = p_fct(c("depthwise", "lossguide"), default = "depthwise", tags = "train", depends = quote(tree_method == "hist")),
interaction_constraints = p_uty(tags = "train"),
iterationrange = p_uty(tags = "predict"),
lambda = p_dbl(0, default = 1, tags = "train"),
lambda_bias = p_dbl(0, default = 0, tags = "train", depends = quote(booster == "gblinear")),
max_bin = p_int(2L, default = 256L, tags = "train", depends = quote(tree_method == "hist")),
max_delta_step = p_dbl(0, default = 0, tags = "train"),
max_depth = p_int(0L, default = 6L, tags = c("train", "control")),
max_leaves = p_int(0L, default = 0L, tags = "train", depends = quote(grow_policy == "lossguide")),
maximize = p_lgl(default = NULL, special_vals = list(NULL), tags = "train"),
min_child_weight = p_dbl(0, default = 1, tags = c("train", "control")),
missing = p_dbl(default = NA, tags = c("train", "predict"), special_vals = list(NA, NA_real_, NULL)),
monotone_constraints = p_uty(default = 0, tags = c("train", "control"), custom_check = crate(function(x) { checkmate::check_integerish(x, lower = -1, upper = 1, any.missing = FALSE) })), # nolint
nrounds = p_nrounds,
normalize_type = p_fct(c("tree", "forest"), default = "tree", tags = "train", depends = quote(booster == "dart")),
nthread = p_int(1L, default = 1L, tags = c("train", "control", "threads")),
ntreelimit = p_int(1L, default = NULL, special_vals = list(NULL), tags = "predict"),
num_parallel_tree = p_int(1L, default = 1L, tags = c("train", "control")),
objective = p_uty(default = "binary:logistic", tags = c("train", "predict", "control")),
one_drop = p_lgl(default = FALSE, tags = "train", depends = quote(booster == "dart")),
outputmargin = p_lgl(default = FALSE, tags = "predict"),
predcontrib = p_lgl(default = FALSE, tags = "predict"),
predinteraction = p_lgl(default = FALSE, tags = "predict"),
predleaf = p_lgl(default = FALSE, tags = "predict"),
print_every_n = p_int(1L, default = 1L, tags = "train", depends = quote(verbose == 1L)),
process_type = p_fct(c("default", "update"), default = "default", tags = "train"),
rate_drop = p_dbl(0, 1, default = 0, tags = "train", depends = quote(booster == "dart")),
refresh_leaf = p_lgl(default = TRUE, tags = "train"),
reshape = p_lgl(default = FALSE, tags = "predict"),
seed_per_iteration = p_lgl(default = FALSE, tags = "train"),
sampling_method = p_fct(c("uniform", "gradient_based"), default = "uniform", tags = "train", depends = quote(booster == "gbtree")),
sample_type = p_fct(c("uniform", "weighted"), default = "uniform", tags = "train", depends = quote(booster == "dart")),
save_name = p_uty(default = NULL, tags = "train"),
save_period = p_int(0, default = NULL, special_vals = list(NULL), tags = "train"),
scale_pos_weight = p_dbl(default = 1, tags = "train"),
skip_drop = p_dbl(0, 1, default = 0, tags = "train", depends = quote(booster == "dart")),
strict_shape = p_lgl(default = FALSE, tags = "predict"),
subsample = p_dbl(0, 1, default = 1, tags = c("train", "control")),
top_k = p_int(0, default = 0, tags = "train", depends = quote(feature_selector %in% c("greedy", "thrifty") && booster == "gblinear")),
training = p_lgl(default = FALSE, tags = "predict"),
tree_method = p_fct(c("auto", "exact", "approx", "hist", "gpu_hist"), default = "auto", tags = "train", depends = quote(booster %in% c("gbtree", "dart"))),
tweedie_variance_power = p_dbl(1, 2, default = 1.5, tags = "train", depends = quote(objective == "reg:tweedie")),
updater = p_uty(tags = "train"), # Default depends on the selected booster
verbose = p_int(0L, 2L, default = 1L, tags = "train"),
watchlist = p_uty(default = NULL, tags = "train"),
xgb_model = p_uty(default = NULL, tags = "train")
)
# custom defaults
ps$set_values(nrounds = 1000L, nthread = 1L, verbose = 0L)
super$initialize(
id = "classif.xgboost",
predict_types = c("response", "prob"),
param_set = ps,
feature_types = c("logical", "integer", "numeric"),
properties = c("weights", "missings", "twoclass", "multiclass", "importance", "hotstart_forward", "internal_tuning", "validation", "offset"),
packages = c("mlr3learners", "xgboost"),
label = "Extreme Gradient Boosting",
man = "mlr3learners::mlr_learners_classif.xgboost"
)
},
#' @description
#' The importance scores are calculated with [xgboost::xgb.importance()].
#'
#' @return Named `numeric()`.
importance = function() {
if (is.null(self$model)) {
stopf("No model stored")
}
imp = xgboost::xgb.importance(
model = self$model
)
set_names(imp$Gain, imp$Feature)
}
),
active = list(
#' @field internal_valid_scores (named `list()` or `NULL`)
#' The validation scores extracted from `model$evaluation_log`.
#' If early stopping is activated, this contains the validation scores of the model for the optimal `nrounds`,
#' otherwise the `nrounds` for the final model.
internal_valid_scores = function() {
self$state$internal_valid_scores
},
#' @field internal_tuned_values (named `list()` or `NULL`)
#' If early stopping is activated, this returns a list with `nrounds`,
#' which is extracted from `$best_iteration` of the model and otherwise `NULL`.
internal_tuned_values = function() {
self$state$internal_tuned_values
},
#' @field validate (`numeric(1)` or `character(1)` or `NULL`)
#' How to construct the internal validation data. This parameter can be either `NULL`,
#' a ratio, `"test"`, or `"predefined"`.
validate = function(rhs) {
if (!missing(rhs)) {
private$.validate = assert_validate(rhs)
}
private$.validate
}
),
private = list(
.validate = NULL,
.train = function(task) {
pv = self$param_set$get_values(tags = "train")
lvls = task$class_names
nlvls = length(lvls)
if (is.null(pv$objective)) {
pv$objective = if (nlvls == 2L) "binary:logistic" else "multi:softprob"
}
if (self$predict_type == "prob" && pv$objective == "multi:softmax") {
stopf("objective = 'multi:softmax' does not work with predict_type = 'prob'")
}
switch(pv$objective,
"multi:softprob" =,
"multi:softmax" = {
# add the number of classes 'num_class'
pv$num_class = nlvls
# we have to set this to avoid a deprecation warning
if (is.null(pv$feval)) pv$eval_metric = pv$eval_metric %??% "mlogloss"
},
"binary:logistic" = {
if (is.null(pv$feval)) pv$eval_metric = pv$eval_metric %??% "logloss"
}
)
data = task$data(cols = task$feature_names)
# recode to 0:1 so that for the binary case the positive class translates to 1 (#32)
# note that task$truth() is guaranteed to have the factor levels in the right order
label = nlvls - as.integer(task$truth())
xgb_data = xgboost::xgb.DMatrix(data = as_numeric_matrix(data), label = label)
if ("weights" %in% task$properties) {
xgboost::setinfo(xgb_data, "weight", task$weights$weight)
}
if ("offset" %in% task$properties) {
offset = task$offset
if (nlvls == 2L) {
# binary case
base_margin = offset$offset
} else {
# multiclass needs a matrix (n_samples, n_classes)
# it seems reasonable to reorder according to label (0,1,2,...)
reordered_cols = paste0("offset_", rev(levels(task$truth())))
n_offsets = ncol(offset) - 1 # all expect `row_id`
if (length(reordered_cols) != n_offsets) {
stopf("Task has %i class labels, and only %i offset columns are provided",
nlevels(task$truth()), n_offsets)
}
base_margin = as_numeric_matrix(offset)[, reordered_cols]
}
xgboost::setinfo(xgb_data, "base_margin", base_margin)
}
# the last element in the watchlist is used as the early stopping set
internal_valid_task = task$internal_valid_task
if (!is.null(pv$early_stopping_rounds) && is.null(internal_valid_task)) {
stopf("Learner (%s): Configure field 'validate' to enable early stopping.", self$id)
}
if (!is.null(internal_valid_task)) {
valid_data = internal_valid_task$data(cols = internal_valid_task$feature_names)
valid_label = nlvls - as.integer(internal_valid_task$truth())
xgb_valid_data = xgboost::xgb.DMatrix(data = as_numeric_matrix(valid_data), label = valid_label)
if ("weights" %in% internal_valid_task$properties) {
xgboost::setinfo(xgb_valid_data, "weight", internal_valid_task$weights$weight)
}
if ("offset" %in% internal_valid_task$properties) {
valid_offset = internal_valid_task$offset
if (nlvls == 2L) {
base_margin = valid_offset$offset
} else {
# multiclass needs a matrix (n_samples, n_classes)
# it seems reasonable to reorder according to label (0,1,2,...)
reordered_cols = paste0("offset_", rev(levels(internal_valid_task$truth())))
base_margin = as_numeric_matrix(valid_offset)[, reordered_cols]
}
xgboost::setinfo(xgb_valid_data, "base_margin", base_margin)
}
pv$watchlist = c(pv$watchlist, list(test = xgb_valid_data))
}
# set internal validation measure
if (inherits(pv$eval_metric, "Measure")) {
n_classes = length(task$class_names)
measure = pv$eval_metric
fun = if (pv$objective == "binary:logistic" && measure$predict_type == "prob" && inherits(measure, "MeasureBinarySimple")) {
xgboost_binary_binary_prob
} else if (pv$objective == "binary:logistic" && measure$predict_type == "prob" && inherits(measure, "MeasureClassifSimple")) {
xgboost_binary_classif_prob
} else if (pv$objective == "binary:logistic" && measure$predict_type == "response") {
xgboost_binary_response
} else if (pv$objective == "multi:softprob" && measure$predict_type == "prob") {
xgboost_multiclass_prob
} else if (pv$objective %in% c("multi:softmax", "multi:softprob") && measure$predict_type == "response") {
xgboost_multiclass_response
} else {
stop("Only 'binary:logistic', 'multi:softprob' and 'multi:softmax' objectives are supported.")
}
pv$eval_metric = mlr3misc::crate({function(pred, dtrain) {
scores = fun(pred, dtrain, measure, n_classes)
list(metric = measure$id, value = scores)
}}, n_classes, measure, fun)
pv$maximize = !measure$minimize
}
invoke(xgboost::xgb.train, data = xgb_data, .args = pv)
},
.predict = function(task) {
pv = self$param_set$get_values(tags = "predict")
model = self$model
response = prob = NULL
lvls = rev(task$class_names)
nlvls = length(lvls)
if (is.null(pv$objective)) {
pv$objective = ifelse(nlvls == 2L, "binary:logistic", "multi:softprob")
}
newdata = as_numeric_matrix(ordered_features(task, self))
pred = invoke(predict, model, newdata = newdata, .args = pv)
if (nlvls == 2L) { # binaryclass
if (pv$objective == "multi:softprob") {
prob = matrix(pred, ncol = nlvls, byrow = TRUE)
colnames(prob) = lvls
} else {
prob = pvec2mat(pred, lvls)
}
} else { # multiclass
if (pv$objective == "multi:softmax") {
response = lvls[pred + 1L]
} else {
prob = matrix(pred, ncol = nlvls, byrow = TRUE)
colnames(prob) = lvls
}
}
if (!is.null(response)) {
list(response = response)
} else if (self$predict_type == "response") {
i = max.col(prob, ties.method = "random")
list(response = factor(colnames(prob)[i], levels = lvls))
} else {
list(prob = prob)
}
},
.hotstart = function(task) {
model = self$model
pars = self$param_set$get_values(tags = "train")
pars_train = self$state$param_vals
if (!is.null(pars_train$early_stopping_rounds)) {
stopf("The parameter `early_stopping_rounds` is set. Early stopping and hotstarting are incompatible.")
}
# Calculate additional boosting iterations
# niter in model and nrounds in ps should be equal after train and continue
pars$nrounds = pars$nrounds - pars_train$nrounds
# Construct data
nlvls = length(task$class_names)
data = task$data(cols = task$feature_names)
label = nlvls - as.integer(task$truth())
data = xgboost::xgb.DMatrix(data = as_numeric_matrix(data), label = label)
invoke(xgboost::xgb.train, data = data, xgb_model = model, .args = pars)
},
.extract_internal_tuned_values = function() {
if (is.null(self$state$param_vals$early_stopping_rounds)) {
return(NULL)
}
list(nrounds = self$model$best_iteration)
},
.extract_internal_valid_scores = function() {
if (is.null(self$model$evaluation_log)) {
NULL
}
iter = if (!is.null(self$model$best_iteration)) self$model$best_iteration else self$model$niter
as.list(self$model$evaluation_log[
iter,
set_names(get(".SD"), gsub("^test_", "", colnames(get(".SD")))),
.SDcols = patterns("^test_")
])
}
)
)
#' @export
default_values.LearnerClassifXgboost = function(x, search_space, task, ...) { # nolint
special_defaults = list(
nrounds = 1L
)
defaults = insert_named(default_values(x$param_set), special_defaults)
defaults[search_space$ids()]
}
#' @include aaa.R
learners[["classif.xgboost"]] = LearnerClassifXgboost
# mlr3 measure to custom inner measure functions
xgboost_binary_binary_prob = function(pred, dtrain, measure, ...) {
# label is a vector of labels (0, 1)
truth = factor(xgboost::getinfo(dtrain, "label"), levels = c(0, 1))
# pred is a vector of log odds
# transform log odds to probabilities
pred = 1 / (1 + exp(-pred))
measure$fun(truth, pred, positive = "1")
}
xgboost_binary_classif_prob = function(pred, dtrain, measure, ...) {
# label is a vector of labels (0, 1)
truth = factor(xgboost::getinfo(dtrain, "label"), levels = c(0, 1))
# pred is a vector of log odds
# transform log odds to probabilities
pred = 1 / (1 + exp(-pred))
# multiclass measure needs a matrix of probabilities
pred_mat = matrix(c(pred, 1 - pred), ncol = 2)
colnames(pred_mat) = c("1", "0")
measure$fun(truth, pred_mat, positive = "1")
}
xgboost_binary_response = function(pred, dtrain, measure, ...) {
# label is a vector of labels (0, 1)
truth = factor(xgboost::getinfo(dtrain, "label"), levels = c(0, 1))
# pred is a vector of log odds
response = factor(as.integer(pred > 0), levels = c(0, 1))
measure$fun(truth, response)
}
xgboost_multiclass_prob = function(pred, dtrain, measure, n_classes, ...) {
# label is a vector of labels (0, 1, ..., n_classes - 1)
truth = factor(xgboost::getinfo(dtrain, "label"), levels = seq_len(n_classes) - 1L)
# pred is a vector of log odds for each class
# matrix must be filled by row
pred_mat = matrix(pred, ncol = n_classes, byrow = TRUE)
# transform log odds to probabilities
pred_exp = exp(pred_mat)
pred_mat = pred_exp / rowSums(pred_exp)
colnames(pred_mat) = levels(truth)
measure$fun(truth, pred_mat)
}
xgboost_multiclass_response = function(pred, dtrain, measure, n_classes, ...) {
# label is a vector of labels (0, 1, ..., n_classes - 1)
truth = factor(xgboost::getinfo(dtrain, "label"), levels = seq_len(n_classes) - 1L)
# pred is a vector of log odds for each class
# matrix must be filled by row
pred_mat = matrix(pred, ncol = n_classes, byrow = TRUE)
response = factor(max.col(pred_mat, ties.method = "random") - 1, levels = levels(truth))
measure$fun(truth, response)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.