#' @title PipeOpSplitMultiout
#'
#' @usage NULL
#' @name mlr_pipeops_multioutsplit
#' @format [`R6Class`] inheriting from [`PipeOp`].
#'
#' @description
#' Splits a [multioutput Task][TaskMultioutput] into several [Tasks][mlr3::Task].
#'
#' For each target_type in the original [multioutput Task][TaskMultioutput], a new [Task][mlr3::Task]
#' containing the respective target and task_type is constructed.
#'
#' This [`PipeOp`] creates a [`Multiplicity`], which means that subsequent [`PipeOp`]s are executed
#' multiple times.
#'
#' Note that [`Multiplicity`] is currently an experimental feature and the implementation or UI
#' may change.
#'
#' @section Construction:
#' ```
#' PipeOpSplitMultiout$new(id = "multioutsplit", param_vals = list())
#' ```
#' * `id` :: `character(1)`\cr
#' Identifier of the resulting object, default `"ovrsplit"`.
#' * `param_vals` :: named `list`\cr
#' List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise
#' be set during construction. Default `list()`.
#'
#' @section Input and Output Channels:
#' [`PipeOpSplitMultiout`] has one input channel named `"input"` taking a
#' [`TaskMultioutput`][TaskMultioutput] both during training and prediction.
#'
#' [`PipeOpSplitMultiout`] has one output channel named `"output"` returning a [`Multiplicity`] of
#' [`Tasks`][mlr3::Task]s both during training and prediction.
#'
#' @section State:
#' The `$state` contains the original task_types of the [`TaskMultioutput`] supplied
#' during training.
#'
#' @section Parameters:
#' [`PipeOpSplitMultiout`] has no parameters.
#'
#' @section Internals:
#'
#' The names of the element of the output [`Multiplicity`] are given by the levels of the target.
#'
#' Should be used in combination with [`PipeOpPredictionMultioutUnite`].
#'
#' @section Fields:
#' Only fields inherited from [`PipeOp`].
#'
#' @section Methods:
#' Only methods inherited from [`PipeOp`].
#' @family PipeOps
#' @family Multiplicity PipeOps
#' @family Experimental Features
#' @export
#' @examples
#' library(mlr3)
#' task = tsk("linnerud")
#' po = po("multioutsplit")
#' po$train(list(task))
#' po$predict(list(task))
PipeOpSplitMultiout = R6Class("PipeOpSplitMultiout",
inherit = mlr3pipelines::PipeOp,
public = list(
#' @description
#' Initialize a new R6 class.
#'
#' @param id `character(1)`\cr
#' Identifier of the resulting object, internally defaulting "targetsplit".
#' @param param_vals named `list`\cr
#' List of hyperparameter settings, overwriting the hyperparameter settings that would
#' otherwise be set during construction. Default `list()`.
initialize = function(id = "targetsplit", param_vals = list()) {
super$initialize(id, param_vals = param_vals,
input = data.table(name = "input", train = "TaskMultioutput", predict = "TaskMultioutput"),
output = data.table(name = "output", train = "[Task]", predict = "[Task]"),
tags = "multiplicity"
)
}
),
private = list(
.train = function(inputs) {
self$state = list(task_types = inputs[[1]]$task_types)
list(as.Multiplicity(convert_to_basic_tasks(inputs[[1]])))
},
.predict = function(inputs) {
list(as.Multiplicity(convert_to_basic_tasks(inputs[[1]])))
}
)
)
#' @title PipeOpPredictionMultioutUnite
#'
#' @usage NULL
#' @name mlr_pipeops_multioutunite
#' @format [`R6Class`] inheriting from [`PipeOpEnsemble`]/[`PipeOp`].
#'
#' @description
#' Unite a set of "classif", "regr"' [`Predictions`][mlr3::Prediction] into a
#' [`PredictionMultioutput`].
#' This [`PipeOp`] uses a [`Multiplicity`] input, which is created by [`PipeOpMultiplicityImply`]
#' or other [`PipeOp`]s that implicate a [`Multiplicity`].
#'
#' Note that [`Multiplicity`] is currently an experimental feature and the implementation or UI
#' may change.
#'
#' @section Input and Output Channels:
#' Input and output channels are inherited from [`PipeOpEnsemble`]. Instead of a
#' [`PipeOpEnsemble`]'s `collect` parameter is initialized
#' with `TRUE` to allow for collecting a [`Multiplicity`] input.
#'
#' @section State:
#' The `$state` is left empty (`list()`).
#'
#' @section Parameters:
#' The parameters are the parameters inherited from the [`PipeOpEnsemble`].
#'
#' @section Internals:
#' Inherits from [`PipeOpEnsemble`] by implementing the `private$.predict()` method.
#'
#' Should be used in combination with [`PipeOpSplitMultiOut`].
#'
#' @section Fields:
#' Only fields inherited from [`PipeOpEnsemble`]/[`PipeOp`].
#'
#' @section Methods:
#' Only methods inherited from [`PipeOpEnsemble`]/[`PipeOp`].
#' @family PipeOps
#' @family Ensembles
#' @family Multiplicity PipeOps
#' @family Experimental Features
#' @export
PipeOpPredictionMultioutUnite = R6Class("PipeOpPredictionMultioutUnite",
inherit = mlr3pipelines::PipeOpEnsemble,
public = list(
#' @description
#' Initialize a new R6 class.
#'
#' @param id `character(1)`\cr
#' Identifier of the resulting object, defaults to "multioutunite".
#' @param param_vals named `list`\cr
#' List of hyperparameter settings, overwriting the hyperparameter settings that would
#' otherwise be set during construction. Default `list()`.
initialize = function(id = "multioutunite", param_vals = list()) {
super$initialize(0, TRUE, id, param_vals = param_vals, prediction_type = "Prediction",
tags = "multiplicity")
}
),
private = list(
.predict = function(inputs) {
if (private$.collect) {
inputs = unclass(inputs[[1]])
}
list(PredictionMultioutput$new(row_ids = inputs[[1]]$row_ids, predictions = inputs))
}
)
)
#' @title PipeOpMultiLearner
#'
#' @usage NULL
#' @name mlr_pipeops_multioutlrn
#' @format [`R6Class`] object inheriting from [`PipeOp`].
#'
#' @description
#' Wraps a `list` of [`mlr3::Learner`]s into a [`PipeOp`].
#'
#' Inherits the `$param_set`s (and therefore `$param_set$values`) from all
#' [`Learner`][mlr3::Learner]s it is constructed from.
#'
#' @section Input and Output Channels:
#' [`PipeOpMultiLearner`] has one input channel named `"input"`, taking a [`Task`][mlr3::Task]
#' specific to the [`Learner`][mlr3::Learner]
#' type given to `learner` during construction; both during training and prediction.
#'
#' [`PipeOpMultiLearner`] has one output channel named `"output"`, producing `NULL` during training
#' and a [`Multiplicity`][mlr3pipelines::Multiplicity] of [`Predictions`][mlr3::Prediction]
#' during prediction; this subclass is specific to the [`Learner`][mlr3::Learner] type given to
#' `learner` during construction.
#'
#' The output during prediction is a [`Multiplicity`][mlr3pipelines::Multiplicity] of
#' [`Predictions`][mlr3::Prediction] on the input data, produced by the [`Learners`][mlr3::Learner]
#' trained on the training input data.
#'
#' @section State:
#' The `$state` is set to the `$state` slot of the [`Learner`][mlr3::Learner] object. It is a named
#' `list` with members:
#' of states for each separate `Task` provided via the incoming `Multiplicity`.\
#' Each element contains the following slots:
#' * `model` :: `any`\cr
#' Model created by the [`Learner`][mlr3::Learner]'s `$.train()` function.
#' * `train_log` :: [`data.table`] with columns `class` (`character`), `msg` (`character`)\cr
#' Errors logged during training.
#' * `train_time` :: `numeric(1)`\cr
#' Training time, in seconds.
#' * `predict_log` :: `NULL` | [`data.table`] with columns `class` (`character`),
#' `msg` (`character`)\cr
#' Errors logged during prediction.
#' * `predict_time` :: `NULL` | `numeric(1)`
#' Prediction time, in seconds.
#'
#' @section Parameters:
#' The parameters are exactly the parameters of the [`Learners`][mlr3::Learner] wrapped
#' by this object.
#'
#' @section Internals:
#' The `$state` is currently not updated by prediction, so the `$state$predict_log` and
#' `$state$predict_time` will always be `NULL`.
#'
#' @section Methods:
#' Methods inherited from [`PipeOp`].
#'
#' @family PipeOps
#' @family Multiplicity PipeOps
#' @family Experimental Features
#' @export
#' @examples
#' library("mlr3")
#' library("mlr3pipelines")
#'
#' task = tsk("linnerud")
#' learners = list(
#' classif = lrn("classif.rpart", cp = 0.1),
#' regr = lrn("regr.rpart")
#' )
#' lrn_po = mlr_pipeops$get("multioutlrn", learners)
#'
#' # Train the graph
#' gr = po("multioutsplit") %>>% lrn_po
#' gr$train(task)
#' gr$predict(task)
PipeOpMultiLearner = R6Class("PipeOpMultiLearner",
inherit = mlr3pipelines::PipeOp,
public = list(
#' @description
#' Initialize a new R6 class.
#'
#' @param learners `list()`\cr
#' List of [`Learner`][mlr3::Learner] | `character(1)`, either:
#' * One learner for each `task_type`
#' * One learner for each `target`, requires list to be named with the Task's `target_names`.
#' @param id `character(1)`\cr
#' Identifier of the resulting object, internally defaulting to the combined `ids` of the
#' [`Learner`][mlr3::Learner] being wrapped.
#' @param param_vals named `list`\cr
#' List of hyperparameter settings, overwriting the hyperparameter settings that would
#' otherwise be set during construction. Default `list()`.
initialize = function(learners, id = NULL, param_vals = list()) {
private$.learners = map(learners, as_learner, clone = TRUE)
id = id %??% paste0(map_chr(private$.learners, "id"), collapse = "_")
task_type = mlr_reflections$task_types[get("type") == private$.learner$task_type][order(get("package"))][1L]$task # nolint
out_type = mlr_reflections$task_types[get("type") == private$.learner$task_type][order(get("package"))][1L]$prediction # nolint
ps = paradox::ParamSetCollection$new(imap(learners, function(x, i) {x$param_set$set_id = paste0("learner_", i); x$param_set})) # nolint
super$initialize(id, param_vals = param_vals,
param_set = ps,
input = data.table(name = "input", train = "[Task]", predict = "[Task]"),
output = data.table(name = "output", train = "NULL", predict = "Prediction"),
tags = "learner"
)
}
),
active = list(
#' @field id (`character(1)`)\cr
#' Access or set the `id`.
id = function(val) {
if (!missing(val)) {
private$.id = val
private$.param_set$set_id = val
}
private$.id
},
#' @field learners (`list()`)\cr
#' Access the stored learners.
learners = function(val) {
if (!missing(val)) {
if (!identical(val, private$.learners)) {
stop("$learner is read-only.")
}
}
private$.learners
},
#' @field learner_models (`list()`)\cr
#' Access the trained learners.
learner_models = function(val) {
if (!missing(val)) {
if (!identical(val, private$.learners)) {
stop("$learner_models is read-only.")
}
}
if (is.null(self$state) || is_noop(self$state)) {
private$.learners
} else {
multiplicity_recurse(self$state, clone_with_state, learner = private$.learners)
}
},
#' @field predict_types (`list()`)\cr
#' Access the predict_types.
predict_types = function(val) {
if (!missing(val)) {
assert_subset(val, names(mlr_reflections$learner_predict_types[[private$.learner$task_type]]))
private$.learner$predict_type = val
}
private$.learner$predict_type
}
),
private = list(
.learners = NULL,
.train = function(inputs) {
on.exit(private$.reset_learner_states())
self$state = list()
map(unclass(inputs[[1]]), private$.train_per_task)
list(NULL)
},
.predict = function(inputs) {
on.exit(private$.reset_learner_states())
prds = map(unclass(inputs[[1]]), function(x) {
tn = x$target_names
private$.learners[[x$task_type]]$state = self$state[[tn]]
private$.learners[[x$task_type]]$predict(x)
})
list(PredictionMultioutput$new(row_ids = prds[[1]]$row_ids, predictions = prds))
},
.train_per_task = function(task) {
self$state[[task$target_names]] = private$.learners[[task$task_type]]$clone()$train(task)$state
},
.reset_learner_states = function() {
map(private$.learners, function(x) x$state = NULL)
return(NULL)
}
)
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.