#' @title L2-Regularized L2-Loss Support Vector Classification Learner
#'
#' @name mlr_learners_classif.liblinearl2l2svc
#'
#' @description
#' L2-Regularized L2-Loss support vector classification learner.
#' Calls [LiblineaR::LiblineaR()] (`type = 1` or `type = 2`) from package
#' \CRANpkg{LiblineaR}.
#'
#' @details
#' If number of records > number of features, `type = 2` is faster than `type =
#' 1` (Hsu et al. 2003).
#'
#' The default for `epsilon` is set to match `type = "2"`. If you change to
#' `type = "1"` remember to eventually adjust the value for `epsilon` (default
#' = 0.1).
#'
#' @templateVar id classif.liblinearl2l2svc
#' @template section_dictionary_learner
#'
#' @references
#' \cite{mlr3learners.liblinear}{hsu_2003}
#'
#' @export
#' @template seealso_learner
#' @template example
LearnerClassifLiblineaRL2L2SVC = R6Class("LearnerClassifLiblineaRL2L2SVC", # nolint
inherit = LearnerClassif,
public = list(
#' @description
#' Creates a new instance of this [R6][R6::R6Class] class.
initialize = function() {
ps = ParamSet$new(
params = list(
ParamDbl$new(id = "cost", default = 1, lower = 0, tags = "train"),
ParamDbl$new(
id = "epsilon", default = 0.01, special_vals = list(NULL),
lower = 0, tags = "train"),
ParamDbl$new(id = "bias", default = 1, tags = "train"),
ParamFct$new(id = "type", default = "2", levels = c("1", "2"), tags = "train"),
ParamInt$new(id = "cross", default = 0L, lower = 0L, tags = "train"),
ParamLgl$new(id = "verbose", default = FALSE, tags = "train"),
ParamUty$new(id = "wi", default = NULL, tags = "train"),
ParamLgl$new(id = "findC", default = FALSE, tags = "train"),
ParamLgl$new(id = "useInitC", default = TRUE, tags = "train")
)
)
# 50 is an arbitrary choice here
ps$add_dep("findC", "cross", CondAnyOf$new(seq(2:50)))
ps$add_dep("useInitC", "findC", CondEqual$new(TRUE))
if (!is.null(ps$values$type) && ps$values$type == "1") {
cat("yes")
ps$values$epsilon = 0.1
}
super$initialize(
id = "classif.liblinearl2l2svc",
packages = "LiblineaR",
feature_types = "numeric",
predict_types = "response",
param_set = ps,
properties = c("twoclass", "multiclass"),
man = "mlr3learners.liblinear::mlr_learners_classif.liblinearl2l2svc"
)
}
),
private = list(
.train = function(task) {
pars = self$param_set$get_values(tags = "train")
data = task$data()
train = data[, task$feature_names, with = FALSE]
target = data[, task$target_names, with = FALSE]
if (is.null(pars$type)) {
type = 1
} else {
type = as.numeric(pars$type)
}
pars = pars[names(pars) != "type"]
mlr3misc::invoke(LiblineaR::LiblineaR, data = train, target = target,
type = type, .args = pars)
},
.predict = function(task) {
newdata = task$data(cols = task$feature_names)
p = invoke(predict, self$model, newx = newdata)
PredictionClassif$new(task = task, response = p$predictions)
}
)
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.