#' @title Survival Nelson-Aalen Estimator Learner
#' @name mlr_learners_surv.nelson
#'
#' @description
#' A [mlr3proba::LearnerSurv] implementing `survfit` from package
#' \CRANpkg{survival}.
#' Calls [survival::survfit()].
#'
#' @details
#' * `distr` is predicted by estimating the cumulative hazard function from `survival::survfit()`.
#' * `crank` is predicted as the expectation of `distr`
#'
#' @templateVar id surv.nelson
#' @template section_dictionary_learner
#'
#' @references
#' Nelson W (1969).
#' Hazard Plotting for Incomplete Failure Data.
#' Journal of Quality Technology, 1(1), 27–52. doi: 10.1080/00224065.1969.11980344.
#'
#' Nelson, W. (1972).
#' Theory and Applications of Hazard Plotting for Censored Failure Data.
#' Technometrics, 14(4), 945–966.
#'
#' Aalen, O. (1978).
#' Nonparametric Inference for a Family of Counting Processes.
#' The Annals of Statistics, 6(4), 701–726.
#'
#' @template seealso_learner
#' @template example
#' @export
LearnerSurvNelson = R6Class("LearnerSurvNelson", inherit = LearnerSurv,
public = list(
#' @description
#' Creates a new instance of this [R6][R6::R6Class] class.
initialize = function() {
super$initialize(
id = "surv.nelson",
predict_types = c("crank", "distr"),
feature_types = c("logical", "integer", "numeric", "character", "factor", "ordered"),
properties = "missings",
packages = "survival",
man = "mlr3learners.survival::mlr_learners_surv.nelson"
)
}
),
private = list(
.train = function(task) {
mlr3misc::invoke(survival::survfit, formula = task$formula(1), data = task$data())
},
.predict = function(task) {
# Ensures that at all times before the first observed time the cumulative hazard is 0,
# as expected.
# cumhaz = c(0, self$model$cumhaz)
# time = c(0, self$model$time)
# Define WeightedDiscrete distr6 distribution from the cumulative hazard
x = rep(list(list(x = self$model$time, cdf = 1 - exp(-self$model$cumhaz))),
task$nrow)
distr = distr6::VectorDistribution$new(distribution = "WeightedDiscrete", params = x,
decorators = c("CoreStatistics", "ExoticStatistics"))
# Define crank as the mean of the survival distribution
crank = as.numeric(sum(x[[1]]$x * c(x[[1]]$cdf[1], diff(x$cdf))))
mlr3proba::PredictionSurv$new(task = task, crank = rep(crank, task$nrow), distr = distr)
}
)
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.