# Packages ----------------------------------------------------------------
library(torch)
library(torchvision)
# Utils -------------------------------------------------------------------
# plots an image generated given the
# intermediate state
plot_gen <- function(noise) {
img <- G(noise)
img <- img$cpu()
img <- img[1,1,,,newaxis]/2 + 0.5
img <- torch_stack(list(img, img, img), dim = 3)[..,1]
img <- as.raster(as_array(img))
plot(img)
}
# Datasets and loaders ----------------------------------------------------
dir <- "~/Downloads/mnist"
ds <- mnist_dataset(
dir,
transform = transform_to_tensor,
download = TRUE,
)
dl <- dataloader(ds, batch_size = 32, shuffle = TRUE)
# Define the network ------------------------------------------------------
generator <- nn_module(
"generator",
initialize = function(latent_dim, out_channels) {
self$main <- nn_sequential(
nn_conv_transpose2d(latent_dim, 512, kernel_size = 4,
stride = 1, padding = 0, bias = FALSE),
nn_batch_norm2d(512),
nn_relu(),
nn_conv_transpose2d(512, 256, kernel_size = 4,
stride = 2, padding = 1, bias = FALSE),
nn_batch_norm2d(256),
nn_relu(),
nn_conv_transpose2d(256, 128, kernel_size = 4,
stride = 2, padding = 1, bias = FALSE),
nn_batch_norm2d(128),
nn_relu(),
nn_conv_transpose2d(128, out_channels, kernel_size = 4,
stride = 2, padding = 3, bias = FALSE),
nn_tanh()
)
},
forward = function(input) {
self$main(input)
}
)
discriminator <- nn_module(
"discriminator",
initialize = function(in_channels) {
self$main <- nn_sequential(
nn_conv2d(in_channels, 16, kernel_size = 4, stride = 2, padding = 1, bias = FALSE),
nn_leaky_relu(0.2, inplace = TRUE),
nn_conv2d(16, 32, kernel_size = 4, stride = 2, padding = 1, bias = FALSE),
nn_batch_norm2d(32),
nn_leaky_relu(0.2, inplace = TRUE),
nn_conv2d(32, 64, kernel_size = 4, stride = 2, padding = 1, bias = FALSE),
nn_batch_norm2d(64),
nn_leaky_relu(0.2, inplace = TRUE),
nn_conv2d(64, 128, kernel_size = 4, stride = 2, padding = 1, bias = FALSE),
nn_leaky_relu(0.2, inplace = TRUE)
)
self$linear <- nn_linear(128, 1)
self$sigmoid <- nn_sigmoid()
},
forward = function(input) {
x <- self$main(input)
x <- torch_flatten(x, start_dim = 2)
x <- self$linear(x)
self$sigmoid(x)
}
)
device <- torch_device(ifelse(cuda_is_available(), "cuda", "cpu"))
G <- generator(latent_dim = 100, out_channels = 1)
D <- discriminator(in_channels = 1)
init_weights <- function(m) {
if (grepl("conv", m$.classes[[1]])) {
nn_init_normal_(m$weight$data(), 0.0, 0.02)
} else if (grepl("batch_norm", m$.classes[[1]])) {
nn_init_normal_(m$weight$data(), 1.0, 0.02)
nn_init_constant_(m$bias$data(), 0)
}
}
G[[1]]$apply(init_weights)
D[[1]]$apply(init_weights)
G$to(device = device)
D$to(device = device)
G_optimizer <- optim_adam(G$parameters, lr = 2 * 1e-4, betas = c(0.5, 0.999))
D_optimizer <- optim_adam(D$parameters, lr = 2 * 1e-4, betas = c(0.5, 0.999))
fixed_noise <- torch_randn(1, 100, 1, 1, device = device)
# Training loop -----------------------------------------------------------
loss <- nn_bce_loss()
for (epoch in 1:10) {
pb <- progress::progress_bar$new(
total = length(dl),
format = "[:bar] :eta Loss D: :lossd Loss G: :lossg"
)
lossg <- c()
lossd <- c()
coro::loop(for (b in dl) {
y_real <- torch_ones(32, device = device)
y_fake <- torch_zeros(32, device = device)
noise <- torch_randn(32, 100, 1, 1, device = device)
fake <- G(noise)
img <- b[[1]]$to(device = device)
# train the discriminator ---
D_loss <- loss(D(img), y_real) + loss(D(fake$detach()), y_fake)
D_optimizer$zero_grad()
D_loss$backward()
D_optimizer$step()
# train the generator ---
G_loss <- loss(D(fake), y_real)
G_optimizer$zero_grad()
G_loss$backward()
G_optimizer$step()
lossd <- c(lossd, D_loss$item())
lossg <- c(lossg, G_loss$item())
pb$tick(tokens = list(lossd = mean(lossd), lossg = mean(lossg)))
})
with_no_grad({
plot_gen(fixed_noise)
})
cat(sprintf("Epoch %d - Loss D: %3f Loss G: %3f\n", epoch, mean(lossd), mean(lossg)))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.